
Jakub PÅjenÄÃ-k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5580460/publications.pdf Version: 2024-02-01

ΙΛΚΙΙΒ ΡΔ:ΕΝΙΑ

#	Article	IF	CITATIONS
1	Lamellar Organization of Pigments in Chlorosomes, the Light Harvesting Complexes of Green Photosynthetic Bacteria. Biophysical Journal, 2004, 87, 1165-1172.	0.5	211
2	In situ mapping of the energy flow through the entire photosynthetic apparatus. Nature Chemistry, 2016, 8, 705-710.	13.6	139
3	Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes. Journal of the American Chemical Society, 2012, 134, 11611-11617.	13.7	101
4	Excitation Energy Transfer Dynamics and Excited-State Structure in Chlorosomes of Chlorobium phaeobacteroides. Biophysical Journal, 2003, 84, 1161-1179.	0.5	77
5	Internal Structure of Chlorosomes from Brown-Colored Chlorobium Species and the Role of Carotenoids in Their Assembly. Biophysical Journal, 2006, 91, 1433-1440.	0.5	68
6	Structure of Chlorosomes from the Green Filamentous Bacterium <i>Chloroflexus aurantiacus</i> . Journal of Bacteriology, 2009, 191, 6701-6708.	2.2	60
7	Fast Energy Transfer and Exciton Dynamics in Chlorosomes of the Green Sulfur Bacterium Chlorobium tepidum. Journal of Physical Chemistry A, 1998, 102, 4392-4398.	2.5	56
8	Effect of Carotenoid Biosynthesis Inhibition on the Chlorosome Organization in Chlorobium phaeobacteroides Strain CL1401. Photochemistry and Photobiology, 2000, 71, 715-723.	2.5	39
9	Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynthesis Research, 2002, 71, 5-18.	2.9	35
10	Fluorescence detected magnetic resonance (FDMR) of green sulfur photosynthetic bacteria Chlorobium sp Photosynthesis Research, 1994, 40, 1-10.	2.9	34
11	Excited state properties of aryl carotenoids. Physical Chemistry Chemical Physics, 2010, 12, 3112.	2.8	33
12	Chlorosomes: Structure, Function and Assembly. Advances in Photosynthesis and Respiration, 2014, , 77-109.	1.0	32
13	The lamellar spacing in self-assembling bacteriochlorophyll aggregates is proportional to the length of the esterifying alcohol. Photosynthesis Research, 2010, 104, 211-219.	2.9	31
14	Unraveling the nature of coherent beatings in chlorosomes. Journal of Chemical Physics, 2014, 140, 115103.	3.0	29
15	Phosphorescence of singlet oxygen and meso-tetra(4-sulfonatophenyl)porphin: time and spectral resolved study. Journal of Molecular Structure, 2003, 651-653, 301-304.	3.6	28
16	X-Ray Scattering and Electron Cryomicroscopy Study on the Effect of Carotenoid Biosynthesis to the Structure of Chlorobium tepidum Chlorosomes. Biophysical Journal, 2007, 93, 620-628.	0.5	28
17	β-Carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking chlorosomes. Chemical Physics, 2010, 373, 90-97.	1.9	26
18	2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome. Journal of Physical Chemistry Letters, 2014, 5, 1743-1747.	4.6	25

Jakub PåienäÃk

#	Article	IF	CITATIONS
19	Triplet–triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 341-349.	1.0	25
20	Spectroscopic study of singlet oxygen photogeneration in meso-tetra-sulphonatophenyl-porphin. Journal of Luminescence, 2004, 108, 117-119.	3.1	24
21	Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein. Photosynthesis Research, 2018, 135, 213-225.	2.9	24
22	Time and spectral resolved phosphorescence of singlet oxygen and pigments in photosystem II particles. Journal of Luminescence, 2003, 102-103, 313-317.	3.1	23
23	Structural and Functional Roles of Carotenoids in Chlorosomes. Journal of Bacteriology, 2013, 195, 1727-1734.	2.2	22
24	Effect of Carotenoids and Monogalactosyl Diglyceride on Bacteriochlorophyll c Aggregates in Aqueous Buffer: Implications for the Self-assembly of Chlorosomes¶. Photochemistry and Photobiology, 2004, 80, 572.	2.5	20
25	Effect of quinones on formation and properties of bacteriochlorophyll c aggregates. Photosynthesis Research, 2008, 95, 183-189.	2.9	19
26	The Length of Esterifying Alcohol Affects the Aggregation Properties of Chlorosomal Bacteriochlorophylls. Photochemistry and Photobiology, 2008, 84, 1187-1194.	2.5	19
27	Hexanol-Induced Orderâ^'Disorder Transitions in Lamellar Self-Assembling Aggregates of Bacteriochlorophyll <i>c</i> in <i>Chlorobium tepidum</i> Chlorosomes. Langmuir, 2008, 24, 2035-2041.	3.5	16
28	Computational study of short-range interactions in bacteriochlorophyll aggregates. Computational and Theoretical Chemistry, 2012, 998, 87-97.	2.5	15
29	Energy transfer in aggregates of bacteriochlorophyll c self-assembled with azulene derivatives. Physical Chemistry Chemical Physics, 2014, 16, 16755-16764.	2.8	15
30	Hole burning study of excited state structure and energy transfer dynamics of bacteriochlorophyll c in chlorosomes of green sulphur photosynthetic bacteria. Photosynthesis Research, 1994, 42, 1-8.	2.9	14
31	Title is missing!. Photosynthesis Research, 1997, 52, 83-92.	2.9	14
32	Transfer of vibrational coherence through incoherent energy transfer process in Förster limit. Canadian Journal of Chemistry, 2014, 92, 135-143.	1.1	13
33	Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 147-154.	1.0	13
34	Photoprotection of Photosynthetic Pigments in Plant One-Helix Protein 1/2 Heterodimers. Journal of Physical Chemistry Letters, 2020, 11, 9387-9392.	4.6	11
35	Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates. Journal of Physical Chemistry B, 2018, 122, 8834-8845.	2.6	10
36	Effect of Carotenoids and Monogalactosyl Diglyceride on Bacteriochlorophyll c Aggregates in Aqueous Buffer: Implications for the Self-assembly of Chlorosomes¶. Photochemistry and Photobiology, 2004, 80, 572.	2.5	10

Jakub PåienäÃk

#	Article	IF	CITATIONS
37	Hole-burning study of excited energy transfer in the antenna protein CP47 of Synechocystis sp. PCC 6803 mutant H114Q. Journal of Luminescence, 1997, 72-74, 600-602.	3.1	9
38	Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyllÂc with astaxanthin. Photosynthesis Research, 2012, 111, 193-204.	2.9	9
39	Site directed study of excited energy transfer in photosynthetic antenna by hole burning in fluorescence spectra. Journal of Luminescence, 1994, 60-61, 523-526.	3.1	8
40	Delayed fluorescence of meso-tetraphenylporphyrin in acetone and in dimethylsulphoxide. Journal of Luminescence, 2007, 122-123, 247-249.	3.1	8
41	Superradiance of bacteriochlorophyll c aggregates in chlorosomes of green photosynthetic bacteria. Scientific Reports, 2021, 11, 8354.	3.3	7
42	Evidence for localisation of accumulated chlorophyll cation on the D1-accessory chlorophyll in the reaction centre of Photosystem II. Photosynthesis Research, 2005, 84, 297-302.	2.9	6
43	Triplet state quenching of bacteriochlorophyll c aggregates in a protein-free environment of a chlorosome interior. Chemical Physics, 2020, 529, 110542.	1.9	6
44	Spectral hole burning study of photosynthetic antenna pigment-protein complexes. Journal of Molecular Structure, 1993, 294, 131-134.	3.6	5
45	Spectroscopic characterization of pigment binding proteins in normal-grown and iron-stressed thermophilic cyanobacteria Synecococcus sp Journal of Molecular Structure, 1999, 480-481, 577-580.	3.6	4
46	Laser Induced Hole Filling of Bacteriochlorophyll <i>d</i> Monomers of Green Sulfur Photosynthetic Bacteria Antennae. Molecular Crystals and Liquid Crystals, 1996, 291, 201-207.	0.3	3
47	Understanding delayed fluorescence and triplet decays of Protoporphyrin IX under hypoxic conditions. Photochemical and Photobiological Sciences, 2021, 20, 843-857.	2.9	3
48	Fast energy transfer in green photosynthetic bacteria Chlorobium limicola studied by spectral hole burning. Journal of Molecular Structure, 1993, 294, 135-138.	3.6	2
49	Hole-burning spectroscopy of photosynthetically active pigments of green sulphur photosynthetic bacteria. Journal of Luminescence, 1997, 72-74, 593-594.	3.1	2
50	Hole burning study of cyanobacterial Photosystem II complexes differing in the content of small putative chlorophyll-binding proteins. Journal of Luminescence, 2004, 107, 230-235.	3.1	2
51	On the nature of plasmon-induced photocurrent enhancement in Bacteriochlorophyll c sensitized solar cells: Towards red light harvesting. Materials Chemistry and Physics, 2021, 258, 123932.	4.0	2
52	Low temperature optical spectroscopy of natural porphyrins. Journal of Molecular Structure, 1993, 293, 177-180.	3.6	1
53	Persistent hole burning and femtosecond pump-probe absorption spectroscopy of green sulphur photosynthetic bacteria antennae. Journal of Luminescence, 1998, 76-77, 322-326.	3.1	1
54	Effect of Carotenoids and Monogalactosyl Diglyceride on Bacteriochlorophyll <i>c</i> Aggregates in Aqueous Buffer: Implications for the Selfâ€assembly of Chlorosomes [¶] . Photochemistry and Photobiology, 2004, 80, 572-578.	2.5	1

Jakub PåienäÃk

#	Article	IF	CITATIONS
55	Hole Burning and Low Temperature Absorption and Fluorescence Spectroscopy of Algae Affected by Uv-B Stress. Molecular Crystals and Liquid Crystals, 1996, 291, 103-109.	0.3	0
56	Hole-Burning Study of Energy Transfer in Antenna Proteins of Dunaliella Tertiolecta Affected by Iron-Limitation. Molecular Crystals and Liquid Crystals, 1996, 291, 111-117.	0.3	0
57	Low-temperature spectroscopy of algae affected by UV-B stress absorption fluorescence and hole-burning. Journal of Luminescence, 1997, 72-74, 587-588.	3.1	Ο
58	Fast Exciton Dynamics and Coherent Oscillations Revealed by Coherent 2D Spectroscopy in Chlorosomes. EPJ Web of Conferences, 2013, 41, 08015.	0.3	0