Ping Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5580149/publications.pdf

Version: 2024-02-01

257101 288905 2,797 40 24 40 h-index citations g-index papers 41 41 41 3196 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Joint approaches to reduce cadmium exposure risk from rice consumption. Journal of Hazardous Materials, 2022, 429, 128263.	6.5	15
2	Immobilization of Cadmium by Molecular Sieve and Wollastonite Is Soil pH and Organic Matter Dependent. International Journal of Environmental Research and Public Health, 2021, 18, 5128.	1.2	3
3	Purification Efficiency of Three Combinations of Native Aquatic Macrophytes in Artificial Wastewater in Autumn. International Journal of Environmental Research and Public Health, 2021, 18, 6162.	1.2	4
4	Effects of plant growth regulator and chelating agent on the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community. Environmental Pollution, 2021, 283, 117159.	3.7	35
5	Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: The effects of soil properties highlighting cation exchange capacity. Chemosphere, 2021, 283, 131067.	4.2	49
6	Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil. Plant Growth Regulation, 2020, 90, 29-40.	1.8	35
7	Use of Dietary Components to Reduce the Bioaccessibility and Bioavailability of Cadmium in Rice. Journal of Agricultural and Food Chemistry, 2020, 68, 4166-4175.	2.4	20
8	Bioavailability and bioaccessibility of cadmium in contaminated rice by in vivo and in vitro bioassays. Science of the Total Environment, 2020, 719, 137453.	3.9	29
9	Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils. Science of the Total Environment, 2020, 721, 137581.	3.9	88
10	Assessment of the Nutrient Removal Potential of Floating Native and Exotic Aquatic Macrophytes Cultured in Swine Manure Wastewater. International Journal of Environmental Research and Public Health, 2020, 17, 1103.	1.2	13
11	Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza) Tj ETQq $1\ 1\ 0$.	.78 <u>43</u> 14 rg	gBT ₄ /Overlo <mark>ck</mark>
12	In Vitro and In Vivo Testing to Determine Cd Bioaccessibility and Bioavailability in Contaminated Rice in Relation to Mouse Chow. International Journal of Environmental Research and Public Health, 2019, 16, 871.	1.2	9
13	Removal of Total Nitrogen and Phosphorus Using Single or Combinations of Aquatic Plants. International Journal of Environmental Research and Public Health, 2019, 16, 4663.	1.2	36
14	Heavy metal availability, bioaccessibility, and leachability in contaminated soil: effects of pig manure and earthworms. Environmental Science and Pollution Research, 2019, 26, 20030-20039.	2.7	33
15	Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn–Pb mine district: effect of plant species and chelators. Environmental Technology (United Kingdom), 2018, 39, 2138-2150.	1.2	17
16	Dietary strategies to reduce the oral bioaccessibility of cadmium and arsenic in rice. Environmental Science and Pollution Research, 2018, 25, 33353-33360.	2.7	8
17	Oral Bioaccessibility and Exposure Risk of Metal(loid)s in Local Residents Near a Mining-Impacted Area, Hunan, China. International Journal of Environmental Research and Public Health, 2018, 15, 1573.	1.2	13
18	Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L Scientific Reports, 2017, 7, 40583.	1.6	42

#	Article	IF	Citations
19	Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test. Food Chemistry, 2016, 213, 206-214.	4.2	115
20	Oral bioaccessibility and human exposure assessment of cadmium and lead in market vegetables in the Pearl River Delta, South China. Environmental Science and Pollution Research, 2016, 23, 24402-24410.	2.7	23
21	Distribution and fractionation of cadmium in soil aggregates affected by earthworms (Eisenia fetida) and manure compost. Journal of Soils and Sediments, 2016, 16, 2286-2295.	1.5	13
22	Synergistic improvement of crop physiological status by combination of cadmium immobilization and micronutrient fertilization. Environmental Science and Pollution Research, 2016, 23, 6661-6670.	2.7	11
23	Multiple Exposure and Effects Assessment of Heavy Metals in the Population near Mining Area in South China. PLoS ONE, 2014, 9, e94484.	1.1	112
24	Contrasting effects of silicates on cadmium uptake by three dicotyledonous crops grown in contaminated soil. Environmental Science and Pollution Research, 2014, 21, 9921-9930.	2.7	34
25	Accumulation and detoxification of cadmium by larvae of Prodenia litura (Lepidoptera: Noctuidae) feeding on Cd-enriched amaranth leaves. Chemosphere, 2013, 91, 28-34.	4.2	47
26	Purification of contaminated paddy fields by clean water irrigation over two decades. Environmental Geochemistry and Health, 2013, 35, 657-666.	1.8	5
27	Heavy Metal Contamination in Soil and Soybean near the Dabaoshan Mine, South China. Pedosphere, 2013, 23, 298-304.	2.1	82
28	Extractability and bioavailability of Pb and As in historically contaminated orchard soil: Effects of compost amendments. Environmental Pollution, 2013, 177, 90-97.	3.7	95
29	Health risk assessment for consumption of fish originating from ponds near Dabaoshan mine, South China. Environmental Science and Pollution Research, 2013, 20, 5844-5854.	2.7	71
30	Agricultural Technologies for Enhancing the Phytoremediation of Cadmium-Contaminated Soil by Amaranthus hypochondriacus L Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	30
31	Changes During a Century in Trace Element and Macronutrient Concentrations of an Agricultural Soil. Soil Science, 2013, 178, 105-108.	0.9	8
32	Effects of fertiliser and intercropping on cadmium uptake by maize. Chemistry and Ecology, 2013, 29, 489-500.	0.6	14
33	Cadmium accumulation in maize monoculture and intercropping with six legume species. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2013, 63, 376-382.	0.3	1
34	Effect of Fertilizers on Cd Uptake of <i> Amaranthus hypochondriacus < /i > , a High Biomass, Fast Growing and Easily Cultivated Potential Cd Hyperaccumulator. International Journal of Phytoremediation, 2012, 14, 162-173.</i>	1.7	71
35	Lime and Phosphate Could Reduce Cadmium Uptake by Five Vegetables Commonly Grown in South China. Pedosphere, 2011, 21, 223-229.	2.1	38
36	Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. Journal of Hazardous Materials, 2011, 189, 414-419.	6.5	132

#	Article	IF	CITATION
37	Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresource Technology, 2010, 101, 2063-2066.	4.8	190
38	Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 2009, 407, 1551-1561.	3.9	957
39	Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: Field study. Journal of Environmental Sciences, 2009, 21, 849-853.	3.2	156
40	Removal of metals by sorghum plants from contaminated land. Journal of Environmental Sciences, 2009, 21, 1432-1437.	3.2	99