
Akiyoshi Nakayama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5580128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A meta-analysis of genome-wide association studies using Japanese and Taiwanese has revealed novel loci associated with gout susceptibility. Human Cell, 2022, 35, 767.	1.2	1
2	Coffee Consumption Reduces Gout Risk Independently of Serum Uric Acid Levels: Mendelian Randomization Analyses Across Ancestry Populations. ACR Open Rheumatology, 2022, 4, 534-539.	0.9	7
3	OUP accepted manuscript. Rheumatology, 2021, , .	0.9	7
4	First clinical practice guideline for renal hypouricaemia: a rare disorder that aided the development of urate-lowering drugs for gout. Rheumatology, 2021, 60, 3961-3963.	0.9	10
5	Substantial anti-gout effect conferred by common and rare dysfunctional variants of <i>URAT1/SLC22A12</i> . Rheumatology, 2021, 60, 5224-5232.	0.9	10
6	An X chromosome-wide meta-analysis based on Japanese cohorts revealed that non-autosomal variations are associated with serum urate. Rheumatology, 2021, 60, 4430-4432.	0.9	2
7	Porphyrin accumulation in humans with common dysfunctional variants of ABCG2, a porphyrin transporter: potential association with acquired photosensitivity. Human Cell, 2021, 34, 1082-1086.	1.2	4
8	A Proposal for Practical Diagnosis of Renal Hypouricemia: Evidenced from Genetic Studies of Nonfunctional Variants of URAT1/SLC22A12 among 30,685 Japanese Individuals. Biomedicines, 2021, 9, 1012.	1.4	8
9	Increase of serum uric acid levels associated with APOE ε2 haplotype: a clinico-genetic investigation and in vivo approach. Human Cell, 2021, 34, 1727-1733.	1.2	0
10	Dysfunctional missense variant of <i>OAT10/SLC22A13</i> decreases gout risk and serum uric acid levels. Annals of the Rheumatic Diseases, 2020, 79, 164-166.	0.5	26
11	The influence of a noisy environment on hearing impairment and tinnitus: The hearing outcomes of 50-year-old male Japan ground self-defense force personnel. Auris Nasus Larynx, 2020, 47, 931-937.	0.5	0
12	Dysfunctional ABCG2 gene polymorphisms are associated with serum uric acid levels and all-cause mortality in hemodialysis patients. Human Cell, 2020, 33, 559-568.	1.2	7
13	A common variant of LDL receptorÂrelated protein 2 (LRP2) gene is associated with gout susceptibility: a meta-analysis in a Japanese population. Human Cell, 2020, 33, 303-307.	1.2	6
14	Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Annals of the Rheumatic Diseases, 2020, 79, 657-665.	0.5	24
15	Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout. Annals of the Rheumatic Diseases, 2019, 78, 1430-1437.	0.5	73
16	Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Communications Biology, 2019, 2, 115.	2.0	66
17	Clinical practice guideline for renal hypouricemia (1st edition). Human Cell, 2019, 32, 83-87.	1.2	56
18	A common variant of MAF/c-MAF, transcriptional factor gene in the kidney, is associated with gout susceptibility. Human Cell, 2018, 31, 10-13.	1.2	7

Ακιγοςηι Νακαγαμα

#	Article	IF	CITATIONS
19	Common variant of BCAS3 is associated with gout risk in Japanese population: the first replication study after gout GWAS in Han Chinese. BMC Medical Genetics, 2018, 19, 96.	2.1	4
20	Identification of ABCG2 as an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and as a Crucial Factor Influencing CKD Progression. Scientific Reports, 2018, 8, 11147.	1.6	45
21	GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Annals of the Rheumatic Diseases, 2017, 76, 869-877.	0.5	114
22	Multiple common and rare variants of <i>ABCG2</i> cause gout. RMD Open, 2017, 3, e000464.	1.8	46
23	Independent effects of ADH1B and ALDH2 common dysfunctional variants on gout risk. Scientific Reports, 2017, 7, 2500.	1.6	16
24	Meta-analysis confirms an association between gout and a common variant of LRRC16A locus. Modern Rheumatology, 2017, 27, 553-555.	0.9	2
25	Association Between Serum Uric Acid Levels/Hyperuricemia and Hypertension Among 85,286 Japanese Workers. Journal of Clinical Hypertension, 2016, 18, 53-59.	1.0	33
26	Expression of a human NPT1/SLC17A1 missense variant which increases urate export. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35, 536-542.	0.4	11
27	Common variant of PDZ domain containing 1 (PDZK1) gene is associated with gout susceptibility: A replication study and meta-analysis in Japanese population. Drug Metabolism and Pharmacokinetics, 2016, 31, 464-466.	1.1	20
28	Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus. Scientific Reports, 2016, 6, 25360.	1.6	36
29	Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2. Scientific Reports, 2016, 6, 31003.	1.6	42
30	Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Annals of the Rheumatic Diseases, 2016, 75, 652-659.	0.5	144
31	The effects of URAT1/SLC22A12 nonfunctional variants,R90H and W258X, on serum uric acid levels and gout/hyperuricemia progression. Scientific Reports, 2016, 6, 20148.	1.6	33
32	Carrier frequency of the GJB2 mutations that cause hereditary hearing loss in the Japanese population. Journal of Human Genetics, 2015, 60, 613-617.	1.1	19
33	Common variant of ALPK1 is not associated with gout: a replication study. Human Cell, 2015, 28, 1-4.	1.2	9
34	NPT1/SLC17A1 Is a Renal Urate Exporter in Humans and Its Common Gainâ€ofâ€Function Variant Decreases the Risk of Renal Underexcretion Gout. Arthritis and Rheumatology, 2015, 67, 281-287.	2.9	66
35	Identification of a Hypouricemia Patient with SLC2A9 R380W, A Pathogenic Mutation for Renal Hypouricemia Type 2. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 261-265.	0.4	11
36	A Common Variant of Organic Anion Transporter 4 (OAT4/SLC22A11) Gene Is Associated with Renal Underexcretion Type Gout. Drug Metabolism and Pharmacokinetics, 2014, 29, 208-210.	1.1	43

Ακιγοςηι Νακαγαμα

#	Article	IF	CITATIONS
37	Ethnic Differences in ATP-binding Cassette Transporter, Sub-family G, Member 2 (ABCG2/BCRP): Genotype Combinations and Estimated Functions. Drug Metabolism and Pharmacokinetics, 2014, 29, 490-492.	1.1	28
38	ABCG2 Dysfunction Increases the Risk of Renal Overload Hyperuricemia. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 266-274.	0.4	33
39	Common Variant of PDZK1, Adaptor Protein Gene of Urate Transporters, is Not Associated with Gout. Journal of Rheumatology, 2014, 41, 2330-2331.	1.0	7
40	A common variant of leucine-rich repeat-containing 16A (LRRC16A) gene is associated with gout susceptibility. Human Cell, 2014, 27, 1-4.	1.2	33
41	Common variants of a urate-associated gene LRP2 are not associated with gout susceptibility. Rheumatology International, 2014, 34, 473-476.	1.5	9
42	ABCG2 Dysfunction Increases Serum Uric Acid by Decreased Intestinal Urate Excretion. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 275-281.	0.4	60
43	Common Variants of cGKII/PRKG2 Are Not Associated with Gout Susceptibility. Journal of Rheumatology, 2014, 41, 1395-1397.	1.0	4
44	ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Scientific Reports, 2014, 4, 3755.	1.6	125
45	Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Scientific Reports, 2014, 4, 5227.	1.6	70
46	A common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility. Human Cell, 2013, 26, 133-136.	1.2	48
47	Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Scientific Reports, 2013, 3, 2014.	1.6	105
48	Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nature Communications, 2012, 3, 764.	5.8	489
49	ABCC2 is a High-Capacity Urate Transporter and its Genetic Impairment Increases Serum Uric Acid Levels in Humans. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1091-1097.	0.4	70
50	ABCG2/BCRP Dysfunction as a Major Cause of Gout. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1117-1128.	0.4	24
51	Pathogenic GLUT9 Mutations Causing Renal Hypouricemia Type 2 (RHUC2). Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1105-1111.	0.4	38
52	Identification of <i>ABCG2</i> Dysfunction as a Major Factor Contributing to Gout. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1098-1104.	0.4	25
53	Transient degradation of myelin basic protein in the rat hippocampus following acute carbon monoxide poisoning. Neuroscience Research, 2010, 68, 232-240.	1.0	7
54	Common Defects of ABCG2, a High-Capacity Urate Exporter, Cause Gout: A Function-Based Genetic Analysis in a Japanese Population. Science Translational Medicine, 2009, 1, 5ra11.	5.8	334

#	Article	IF	CITATIONS
55	Mutations in Glucose Transporter 9 Gene SLC2A9 Cause Renal Hypouricemia. American Journal of Human Genetics, 2008, 83, 744-751.	2.6	317
56	Mutations in Glucose Transporter 9 Gene SLC2A9 Cause Renal Hypouricemia. American Journal of Human Genetics, 2008, 83, 795.	2.6	6
57	The relationships between titers of anti-Ro or anti-La as measured by ELISA and salivary production rate with age correction. Modern Rheumatology, 2008, 18, 578-584.	0.9	ο