
Arman Eshaghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5579313/publications.pdf Version: 2024-02-01

Δρμανι Εςμαζηι

#	Article	IF	CITATIONS
1	Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.	2.8	295
2	Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.	3.7	269
3	Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain, 2019, 142, 2276-2287.	3.7	113
4	Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nature Communications, 2021, 12, 2078.	5.8	112
5	Progressive multifocal leukoencephalopathy: a review of the neuroimaging features and differential diagnosis. European Journal of Neurology, 2012, 19, 1060-1069.	1.7	104
6	Longitudinal Assessment of Multiple Sclerosis with the Brainâ€Age Paradigm. Annals of Neurology, 2020, 88, 93-105.	2.8	79
7	Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology, 2016, 87, 2463-2470.	1.5	63
8	Role of MRI in diagnosis and treatment of multiple sclerosis. Clinical Neurology and Neurosurgery, 2010, 112, 609-615.	0.6	56
9	Validity and Reliability of a Persian Translation of the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS). Clinical Neuropsychologist, 2012, 26, 975-984.	1.5	53
10	DIVE: A spatiotemporal progression model of brain pathology in neurodegenerative disorders. Neurolmage, 2019, 192, 166-177.	2.1	45
11	Temporal and spatial evolution of grey matter atrophy in primary progressive multiple sclerosis. Neurolmage, 2014, 86, 257-264.	2.1	44
12	Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis. NeuroImage: Clinical, 2015, 7, 306-314.	1.4	37
13	Applying causal models to explore the mechanism of action of simvastatin in progressive multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11020-11027.	3.3	28
14	Pathologic correlates of the magnetization transfer ratio in multiple sclerosis. Neurology, 2020, 95, e2965-e2976.	1.5	28
15	Robust Markers and Sample Sizes for Multicenter Trials of Huntington Disease. Annals of Neurology, 2020, 87, 751-762.	2.8	22
16	BrainPainter: A Software for the Visualisation of Brain Structures, Biomarkers and Associated Pathological Processes. Lecture Notes in Computer Science, 2019, 11846, 112-120.	1.0	21
17	Predicting disability progression and cognitive worsening in multiple sclerosis using patterns of grey matter volumes. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 995-1006.	0.9	20
18	pySuStaln: A Python implementation of the Subtype and Stage Inference algorithm. SoftwareX, 2021, 16, 100811.	1.2	19

Arman Eshaghi

#	Article	IF	CITATIONS
19	Influence of nationality on the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Clinical Neuropsychologist, 2018, 32, 54-62.	1.5	17
20	Staging and stratifying cognitive dysfunction in multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 463-471.	1.4	17
21	Ordinal SuStaln: Subtype and Stage Inference for Clinical Scores, Visual Ratings, and Other Ordinal Data. Frontiers in Artificial Intelligence, 2021, 4, 613261.	2.0	17
22	Clinical relevance of cortical network dynamics in early primary progressive MS. Multiple Sclerosis Journal, 2020, 26, 442-456.	1.4	14
23	Assessing Neurofilaments as Biomarkers of Neuroprotection in Progressive Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	14
24	B Cells in the CNS at Postmortem Are Associated With Worse Outcome and Cell Types in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	13
25	Magnetisation transfer ratio abnormalities in primary and secondary progressive multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 679-687.	1.4	11
26	Differences in topological progression profile among neurodegenerative diseases from imaging data. ELife, 2019, 8, .	2.8	11
27	Concomitant multiple sclerosis and idiopathic thrombocytopenic purpura. European Journal of Neurology, 2010, 17, e62-3.	1.7	9
28	The role of cerebellar abnormalities in neuromyelitis optica – a comparison with multiple sclerosis and healthy controls. Multiple Sclerosis Journal, 2015, 21, 757-766.	1.4	9
29	Linear brain atrophy measures in multiple sclerosis and clinically isolated syndromes: a 30-year follow-up. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 839-846.	0.9	9
30	Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help?. Brain Communications, 2021, 3, fcab237.	1.5	9
31	Periventricular magnetisation transfer ratio abnormalities in multiple sclerosis improve after alemtuzumab. Multiple Sclerosis Journal, 2020, 26, 1093-1101.	1.4	6
32	Spatial patterns of brain lesions assessed through covariance estimations of lesional voxels in multiple Sclerosis: The SPACE-MS technique. NeuroImage: Clinical, 2022, 33, 102904.	1.4	5
33	Disease Knowledge Transfer Across Neurodegenerative Diseases. Lecture Notes in Computer Science, 2019, 11765, 860-868.	1.0	4
34	Designing Multi-arm Multistage Adaptive Trials for Neuroprotection in Progressive Multiple Sclerosis. Neurology, 2022, 98, 754-764.	1.5	4
35	Machine Learning Utility for Optical Coherence Tomography in Multiple Sclerosis. Neurology, 2022, 99, 453-454.	1.5	4
36	P1â€009: A Dataâ€Driven Comparison of the Progression of Brain Atrophy in Posterior Cortical Atrophy and Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P401.	0.4	1

Arman Eshaghi

#	Article	IF	CITATIONS
37	Evolution of regional brain atrophy in children with multiple sclerosis. Neurology, 2019, 92, 694-695.	1.5	1
38	Demyelinating lesions and progressive MS. Neurology, 2019, 93, 283-284.	1.5	1
39	Spatial Distribution of Tau and β-Amyloid Pathologies and Their Role in Different Alzheimer Disease Phenotypes. Neurology, 2021, 96, 191-192.	1.5	1
40	Towards an objective classification of multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1151-1152.	1.4	1
41	Multiple Sclerosis in Children and Adults. Neurology, 2021, 97, 929-930.	1.5	1
42	Author response: Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology, 2017, 88, 1875.2-1875.	1.5	0
43	[P4–257]: ANALYSIS OF THE HETEROGENEITY OF POSTERIOR CORTICAL ATROPHY: DATAâ€DRIVEN MODEL PREDICTS DISTINCT ATROPHY PATTERNS FOR THREE DIFFERENT COGNITIVE SUBGROUPS. Alzheimer's and Dementia, 2017, 13, P1379.	0.4	0
44	[ICâ€Pâ€141]: ANALYSIS OF THE HETEROGENEITY OF POSTERIOR CORTICAL ATROPHY: DATAâ€DRIVEN MODEL PREDICTS DISTINCT ATROPHY PATTERNS FOR THREE DIFFERENT COGNITIVE SUBGROUPS. Alzheimer's and Dementia, 2017, 13, P106.	0.4	0
45	P3â€436: MECHANISTIC PROFILES OF NEURODEGENERATION: A STUDY IN ALZHEIMER'S DISEASE, HEALTHY ACEING AND PRIMARY PROGRESSIVE MULTIPLE SCLEROSIS. Alzheimer's and Dementia, 2018, 14, P1280.	0.4	0
46	First approved treatment in children with multiple sclerosis slows brain atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 454-454.	0.9	0
47	Predicting Abnormal Amyloid Burden. Neurology, 2022, 98, 999-1000.	1.5	0