Owen Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5579183/publications.pdf

Version: 2024-02-01

361413 345221 1,346 38 20 36 citations h-index g-index papers 38 38 38 1194 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	$<$ scp>ZT $<$ /scp>â \in 01: A novel somatostatin receptor 2 antagonist for restoring the glucagon response to hypoglycaemia in type 1 diabetes. Diabetes, Obesity and Metabolism, 2022, 24, 908-917.	4.4	9
2	Carvedilol prevents impairment of the counterregulatory response in recurrently hypoglycaemic diabetic rats. Endocrinology, Diabetes and Metabolism, 2021, 4, e00226.	2.4	4
3	Somatostatin Receptor Antagonism Reverses Glucagon Counterregulatory Failure in Recurrently Hypoglycemic Male Rats. Endocrinology, 2021, 162, .	2.8	6
4	Repeated Activation of Noradrenergic Receptors in the Ventromedial Hypothalamus Suppresses the Response to Hypoglycemia. Endocrinology, 2021, 162, .	2.8	4
5	Alarm Settings of Continuous Glucose Monitoring Systems and Associations to Glucose Outcomes in Type 1 Diabetes. Journal of the Endocrine Society, 2020, 4, bvz005.	0.2	24
6	Associations Between the Time in Hypoglycemia and Hypoglycemia Awareness Status in Type 1 Diabetes Patients Using Continuous Glucose Monitoring Systems. Diabetes Technology and Therapeutics, 2020, 22, 787-793.	4.4	16
7	Altered Central Nutrient Sensing in Male Mice Lacking Insulin Receptors in Glut4-expressing Neurons. Endocrinology, 2019, 160, 2038-2048.	2.8	9
8	Recurrent glucose deprivation leads to the preferential use of lactate by neurons in the ventromedial hypothalamus. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E948-E955.	3 . 5	0
9	Carvedilol prevents counterregulatory failure and impaired hypoglycaemia awareness in non-diabetic recurrently hypoglycaemic rats. Diabetologia, 2019, 62, 676-686.	6.3	10
10	Hyperactivation of the hypothalamoâ€pituitaryâ€adrenocortical axis in streptozotocinâ€diabetic gerbils (<i>Gerbillus gerbillus</i>). International Journal of Experimental Pathology, 2018, 99, 172-179.	1.3	8
11	Insulin regulates GLUT4 in the ventromedial hypothalamus to restore the sympathoadrenal response to hypoglycemia in diabetic rats. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1286-E1295.	3.5	5
12	Noradrenergic Activity in the Human Brain: A Mechanism Supporting the Defense Against Hypoglycemia. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2244-2252.	3.6	23
13	Impaired Glutamatergic Neurotransmission in the Ventromedial Hypothalamus May Contribute to Defective Counterregulation in Recurrently Hypoglycemic Rats. Diabetes, 2017, 66, 1979-1989.	0.6	21
14	Inhibition of glycine transporter-1 in the dorsal vagal complex improves metabolic homeostasis in diabetes and obesity. Nature Communications, 2016, 7, 13501.	12.8	19
15	Posttranscriptional regulation of adrenal TH gene expression contributes to the maladaptive responses triggered by insulin-induced recurrent hypoglycemia. Physiological Reports, 2015, 3, e12307.	1.7	7
16	Reduction in SGLT1 mRNA Expression in the Ventromedial Hypothalamus Improves the Counterregulatory Responses to Hypoglycemia in Recurrently Hypoglycemic and Diabetic Rats. Diabetes, 2015, 64, 3564-3572.	0.6	19
17	Is There Cross Talk Between Portal and Hypothalamic Glucose-Sensing Circuits?. Diabetes, 2014, 63, 2617-2619.	0.6	11
18	Partial blockade of nicotinic acetylcholine receptors improves the counterregulatory response to hypoglycemia in recurrently hypoglycemic rats. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E580-E588.	3.5	13

#	Article	IF	CITATIONS
19	Lactate-Induced Release of GABA in the Ventromedial Hypothalamus Contributes to Counterregulatory Failure in Recurrent Hypoglycemia and Diabetes. Diabetes, 2013, 62, 4239-4246.	0.6	60
20	Influence of VMH fuel sensing on hypoglycemic responses. Trends in Endocrinology and Metabolism, 2013, 24, 616-624.	7.1	79
21	Hypothalamic Regulation of Glucose-Stimulated Insulin Secretion. Diabetes, 2012, 61, 564-565.	0.6	21
22	Increased GABAergic Output in the Ventromedial Hypothalamus Contributes to Impaired Hypoglycemic Counterregulation in Diabetic Rats. Diabetes, 2011, 60, 1582-1589.	0.6	51
23	Modulation of Â-Adrenergic Receptors in the Ventromedial Hypothalamus Influences Counterregulatory Responses to Hypoglycemia. Diabetes, 2011, 60, 3154-3158.	0.6	30
24	Influence of Insulin in the Ventromedial Hypothalamus on Pancreatic Glucagon Secretion In Vivo. Diabetes, 2010, 59, 1521-1527.	0.6	80
25	Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E971-E977.	3.5	52
26	Increased GABAergic Tone in the Ventromedial Hypothalamus Contributes to Suppression of Counterregulatory Reponses After Antecedent Hypoglycemia. Diabetes, 2008, 57, 1363-1370.	0.6	93
27	ATP-Sensitive K+ Channels Regulate the Release of GABA in the Ventromedial Hypothalamus During Hypoglycemia. Diabetes, 2007, 56, 1120-1126.	0.6	73
28	Blockade of GABAA Receptors in the Ventromedial Hypothalamus Further Stimulates Glucagon and Sympathoadrenal but Not the Hypothalamo-Pituitary-Adrenal Response to Hypoglycemia. Diabetes, 2006, 55, 1080-1087.	0.6	107
29	Effects of Insulin Treatment without and with Recurrent Hypoglycemia on Hypoglycemic Counterregulation and Adrenal Catecholamine-Synthesizing Enzymes in Diabetic Rats. Endocrinology, 2006, 147, 1860-1870.	2.8	21
30	Hyperglycemia does not increase basal hypothalamo-pituitary-adrenal activity in diabetes but it does impair the HPA response to insulin-induced hypoglycemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R235-R246.	1.8	36
31	Activation of ATP-Sensitive K+ Channels in the Ventromedial Hypothalamus Amplifies Counterregulatory Hormone Responses to Hypoglycemia in Normal and Recurrently Hypoglycemic Rats. Diabetes, 2005, 54, 3169-3174.	0.6	103
32	Insulin Alone Increases Hypothalamo-Pituitary-Adrenal Activity, and Diabetes Lowers Peak Stress Responses. Endocrinology, 2005, 146, 1382-1390.	2.8	54
33	Diabetes Impairs Hypothalamo-Pituitary-Adrenal (HPA) Responses to Hypoglycemia, and Insulin Treatment Normalizes HPA but not Epinephrine Responses. Diabetes, 2002, 51, 1681-1689.	0.6	75
34	Hyperactivation of the Hypothalamo-Pituitary-Adrenocortical Axis in Streptozotocin-Diabetes Is Associated with Reduced Stress Responsiveness and Decreased Pituitary and Adrenal Sensitivity. Endocrinology, 2002, 143, 1761-1768.	2.8	89
35	Effects of recurrent hyperinsulinemia with and without hypoglycemia on counterregulation in diabetic rats. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1369-E1379.	3. 5	32
36	Hyperactivation of the Hypothalamo-Pituitary-Adrenocortical Axis in Streptozotocin-Diabetes Is Associated with Reduced Stress Responsiveness and Decreased Pituitary and Adrenal Sensitivity. Endocrinology, 2002, 143, 1761-1768.	2.8	22

#	Article	IF	CITATIONS
37	Effects of antecedent hypoglycemia, hyperinsulinemia, and excess corticosterone on hypoglycemic counterregulation. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E455-E465.	3.5	38
38	Molecular Regulation of the Hypothalamo-Pituitary-Adrenal Axis in Streptozotocin-Induced Diabetes: Effects of Insulin Treatment. Endocrinology, 2001, 142, 4872-4879.	2.8	22