
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5579159/publications.pdf Version: 2024-02-01

SI SHI

#	Article	IF	CITATIONS
1	Ferroptosis-related lncRNA pairs to predict the clinical outcome and molecular characteristics of pancreatic ductal adenocarcinoma. Briefings in Bioinformatics, 2022, 23, .	3.2	47
2	The Role of PDGFRA in Predicting Oncological and Immune Characteristics in Pancreatic Ductal Adenocarcinoma. Journal of Oncology, 2022, 2022, 1-16.	0.6	0
3	RNA N6-methyladenosine demethylase FTO promotes pancreatic cancer progression by inducing the autocrine activity of PDGFC in an m6A-YTHDF2-dependent manner. Oncogene, 2022, 41, 2860-2872.	2.6	21
4	Aberrant APOBEC3C expression induces characteristic genomic instability in pancreatic ductal adenocarcinoma. Oncogenesis, 2022, 11, .	2.1	7
5	FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biology, 2021, 38, 101807.	3.9	135
6	SETD8 potentiates constitutive ERK1/2 activation via epigenetically silencing DUSP10 expression in pancreatic cancer. Cancer Letters, 2021, 499, 265-278.	3.2	16
7	Construction of a novel risk model based on the random forest algorithm to distinguish pancreatic cancers with different prognoses and immune microenvironment features. Bioengineered, 2021, 12, 3593-3602.	1.4	10
8	Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. International Journal of Biological Sciences, 2021, 17, 2666-2682.	2.6	10
9	Hyperdense Pancreatic Ductal Adenocarcinoma: Clinical Characteristics and Proteomic Landscape. Frontiers in Oncology, 2021, 11, 640820.	1.3	5
10	Emerging roles of the solute carrier family in pancreatic cancer. Clinical and Translational Medicine, 2021, 11, e356.	1.7	29
11	Role of tumor mutation burden-related signatures in the prognosis and immune microenvironment of pancreatic ductal adenocarcinoma. Cancer Cell International, 2021, 21, 196.	1.8	18
12	Development and multicenter validation of a nomogram for preoperative prediction of lymph node positivity in pancreatic cancer (NeoPangram). Hepatobiliary and Pancreatic Diseases International, 2021, 20, 163-172.	0.6	7
13	Applications of single-cell sequencing in cancer research: progress and perspectives. Journal of Hematology and Oncology, 2021, 14, 91.	6.9	172
14	FGFBP1-mediated crosstalk between fibroblasts and pancreatic cancer cells via FGF22/FGFR2 promotes invasion and metastasis of pancreatic cancer. Acta Biochimica Et Biophysica Sinica, 2021, 53, 997-1008.	0.9	5
15	SETD8 induces stemness and epithelial–mesenchymal transition of pancreatic cancer cells by regulating ROR1 expression. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1614-1624.	0.9	7
16	Ferroptosis: At the Crossroad of Gemcitabine Resistance and Tumorigenesis in Pancreatic Cancer. International Journal of Molecular Sciences, 2021, 22, 10944.	1.8	30
17	Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Molecular Cancer, 2021, 20, 131.	7.9	702
18	TGFB1-induced autophagy affects the pattern of pancreatic cancer progression in distinct ways depending on SMAD4 status. Autophagy, 2020, 16, 486-500.	4.3	73

#	Article	IF	CITATIONS
19	Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer. Gut, 2020, 69, 888-900.	6.1	99
20	AJCC 8th edition staging system for pancreatic ductal adenocarcinoma: A controversial step forward?. European Journal of Surgical Oncology, 2020, 46, 703.	0.5	1
21	The promising role of noncoding RNAs in cancer-associated fibroblasts: an overview of current status and future perspectives. Journal of Hematology and Oncology, 2020, 13, 154.	6.9	28
22	Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. Journal of Hematology and Oncology, 2020, 13, 110.	6.9	698
23	Oncogenic function of TRIM2 in pancreatic cancer by activating ROS-related NRF2/ITGB7/FAK axis. Oncogene, 2020, 39, 6572-6588.	2.6	21
24	Regulation of metabolic reprogramming by tumor suppressor genes in pancreatic cancer. Experimental Hematology and Oncology, 2020, 9, .	2.0	7
25	The role of ferroptosis regulators in the prognosis, immune activity and gemcitabine resistance of pancreatic cancer. Annals of Translational Medicine, 2020, 8, 1347-1347.	0.7	53
26	Differentiation of solid-pseudopapillary tumors of the pancreas from pancreatic neuroendocrine tumors by using endoscopic ultrasound. Clinics and Research in Hepatology and Gastroenterology, 2020, 44, 947-953.	0.7	14
27	PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications. Molecular Cancer, 2020, 19, 49.	7.9	145
28	Ferroptosis: Final destination for cancer?. Cell Proliferation, 2020, 53, e12761.	2.4	73
29	Pin1 promotes pancreatic cancer progression and metastasis by activation of NFâ€₽Bâ€Lâ€18 feedback loop. Cell Proliferation, 2020, 53, e12816.	2.4	32
30	A miR-146a-5p/TRAF6/NF-kB p65 axis regulates pancreatic cancer chemoresistance: functional validation and clinical significance. Theranostics, 2020, 10, 3967-3979.	4.6	103
31	The role of m6A-related genes in the prognosis and immune microenvironment of pancreatic adenocarcinoma. PeerJ, 2020, 8, e9602.	0.9	62
32	Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells. American Journal of Cancer Research, 2020, 10, 1182-1193.	1.4	16
33	Hexokinase 2 dimerization and interaction with voltageâ€dependent anion channel promoted resistance to cell apoptosis induced by gemcitabine in pancreatic cancer. Cancer Medicine, 2019, 8, 5903-5915.	1.3	34
34	The impact of the nodal status and resection margin on the effectiveness of adjuvant chemotherapy for pancreatic cancer: It calls for more careful evaluation. Journal of Surgical Oncology, 2019, 120, 1053-1054.	0.8	0
35	Oncologic outcomes of minimally invasive versus open distal pancreatectomy for pancreatic neuroendocrine tumors: Randomized controlled trials are needed. Journal of Surgical Oncology, 2019, 120, 1284-1285.	0.8	1
36	A PD-L2-based immune marker signature helps to predict survival in resected pancreatic ductal adenocarcinoma. , 2019, 7, 233.		34

Sı Shi

#	Article	IF	CITATIONS
37	Determining the optimal number of examined lymph nodes for accurate staging of pancreatic cancer: An analysis using the nodal staging score model. European Journal of Surgical Oncology, 2019, 45, 1069-1076.	0.5	17
38	The microbiota and microbiome in pancreatic cancer: more influential than expected. Molecular Cancer, 2019, 18, 97.	7.9	169
39	Codelivery Nanosystem Targeting the Deep Microenvironment of Pancreatic Cancer. Nano Letters, 2019, 19, 3527-3534.	4.5	55
40	Role of hepatocyte nuclear factor 4 alpha in cell proliferation and gemcitabine resistance in pancreatic adenocarcinoma. Cancer Cell International, 2019, 19, 49.	1.8	19
41	Role of Damage DNA-Binding Protein 1 in Pancreatic Cancer Progression and Chemoresistance. Cancers, 2019, 11, 1998.	1.7	17
42	The reciprocal regulation between host tissue and immune cells in pancreatic ductal adenocarcinoma: new insights and therapeutic implications. Molecular Cancer, 2019, 18, 184.	7.9	54
43	Proposed Modification of the 8th Edition of the AJCC Staging System for Pancreatic Ductal Adenocarcinoma. Annals of Surgery, 2019, 269, 944-950.	2.1	71
44	Validation and head-to-head comparison of four models for predicting malignancy of intraductal papillary mucinous neoplasm of the pancreas: A study based on endoscopic ultrasound findings. World Journal of Gastrointestinal Oncology, 2019, 11, 1043-1053.	0.8	0
45	FGFBP1, a downstream target of the FBW7/c-Myc axis, promotes cell proliferation and migration in pancreatic cancer. American Journal of Cancer Research, 2019, 9, 2650-2664.	1.4	10
46	TCF7L2 positively regulates aerobic glycolysis via the EGLN2/HIF-1α axis and indicates prognosis in pancreatic cancer. Cell Death and Disease, 2018, 9, 321.	2.7	45
47	<scp>dCK</scp> negatively regulates the <scp>NRF</scp> 2/ <scp>ARE</scp> axis and <scp>ROS</scp> production in pancreatic cancer. Cell Proliferation, 2018, 51, e12456.	2.4	22
48	Do anti-stroma therapies improve extrinsic resistance to increase the efficacy of gemcitabine in pancreatic cancer?. Cellular and Molecular Life Sciences, 2018, 75, 1001-1012.	2.4	31
49	The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics, 2018, 8, 5072-5087.	4.6	139
50	GPx1 is involved in the induction of protective autophagy in pancreatic cancer cells in response to glucose deprivation. Cell Death and Disease, 2018, 9, 1187.	2.7	37
51	Current status and dilemma of second-line treatment in advanced pancreatic cancer: is there a silver lining?. OncoTargets and Therapy, 2018, Volume 11, 4591-4608.	1.0	6
52	MiRâ€⊋9a, targeting caveolin 2 expression, is responsible for limitation of pancreatic cancer metastasis in patients with normal level of serum CA125. International Journal of Cancer, 2018, 143, 2919-2931.	2.3	23
53	Abrogation of glutathione peroxidase-1 drives EMT and chemoresistance in pancreatic cancer by activating ROS-mediated Akt/GSK3β/Snail signaling. Oncogene, 2018, 37, 5843-5857.	2.6	92
54	Time to think: Selecting patients who may benefit from synchronous resection of primary pancreatic cancer and liver metastases. World Journal of Gastroenterology, 2018, 24, 3677-3680.	1.4	15

#	Article	IF	CITATIONS
55	Oncogenic KRAS Targets MUC16/CA125 in Pancreatic Ductal Adenocarcinoma. Molecular Cancer Research, 2017, 15, 201-212.	1.5	45
56	ARF6, induced by mutant Kras, promotes proliferation and Warburg effect in pancreatic cancer. Cancer Letters, 2017, 388, 303-311.	3.2	46
57	FBW7 increases the chemosensitivity of pancreatic cancer cells to gemcitabine through upregulation of ENT1. Oncology Reports, 2017, 38, 2069-2077.	1.2	23
58	Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are going. Experimental and Molecular Medicine, 2017, 49, e406-e406.	3.2	108
59	Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nature Genetics, 2016, 48, 747-757.	9.4	237
60	Energy sources identify metabolic phenotypes in pancreatic cancer. Acta Biochimica Et Biophysica Sinica, 2016, 48, 969-979.	0.9	24
61	Metabolic plasticity in heterogeneous pancreatic ductal adenocarcinoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 177-188.	3.3	18
62	Critical role of oncogenic KRAS in pancreatic cancer (Review). Molecular Medicine Reports, 2016, 13, 4943-4949.	1.1	27
63	New insights into perineural invasion of pancreatic cancer: More than pain. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 111-122.	3.3	39
64	FBW7 (F-box and WD Repeat Domain-Containing 7) Negatively Regulates Glucose Metabolism by Targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) Axis in Pancreatic Cancer. Clinical Cancer Research, 2016, 22, 3950-3960.	3.2	72
65	ALDOA functions as an oncogene in the highly metastatic pancreatic cancer. Cancer Letters, 2016, 374, 127-135.	3.2	104
66	Papillary-like main pancreatic duct invaginated pancreaticojejunostomy versus duct-to-mucosa pancreaticojejunostomy after pancreaticoduodenectomy: AAprospective randomized trial. Surgery, 2015, 158, 1211-1218.	1.0	21
67	Metabolic tumor burden is associated with major oncogenomic alterations and serum tumor markers in patients with resected pancreatic cancer. Cancer Letters, 2015, 360, 227-233.	3.2	37
68	ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer. Cell Research, 2015, 25, 561-573.	5.7	112
69	LSD1 sustains pancreatic cancer growth via maintaining HIF1α-dependent glycolytic process. Cancer Letters, 2014, 347, 225-232.	3.2	63
70	Stathmin destabilizing microtubule dynamics promotes malignant potential in cancer cells by epithelial-mesenchymal transition. Hepatobiliary and Pancreatic Diseases International, 2014, 13, 386-394.	0.6	30
71	Abnormal distribution of peripheral lymphocyte subsets induced by PDAC modulates overall survival. Pancreatology, 2014, 14, 295-301.	0.5	38
72	Profilin-1 suppresses tumorigenicity in pancreatic cancer through regulation of the SIRT3-HIF1α axis. Molecular Cancer, 2014, 13, 187.	7.9	54

#	Article	IF	CITATIONS
73	A novel epigenetic CREBâ€miRâ€373 axis mediates ZIP4â€induced pancreatic cancer growth. EMBO Molecular Medicine, 2013, 5, 1322-1334.	3.3	88
74	Highly lymphatic metastatic pancreatic cancer cells possess stem cell-like properties. International Journal of Oncology, 2013, 42, 979-984.	1.4	36
75	microRNA signature for human pancreatic cancer invasion and metastasis. Experimental and Therapeutic Medicine, 2012, 4, 181-187.	0.8	30
76	Combinational therapy: New hope for pancreatic cancer?. Cancer Letters, 2012, 317, 127-135.	3.2	85