Leena J Peltonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5578770/publications.pdf

Version: 2024-02-01

69 papers

3,300 citations

31 h-index 57 g-index

73 all docs

73 docs citations

times ranked

73

4009 citing authors

#	Article	IF	Citations
1	Nonresonant CARS Imaging of Porous and Solid Silicon Nanoparticles in Human Cells. ACS Biomaterials Science and Engineering, 2022, 8, 4185-4195.	5.2	2
2	Olive oil and clove oil-based nanoemulsion for topical delivery of terbinafine hydrochloride: <i>inÂvitro</i> and <i>ex vivo</i> evaluation. Drug Delivery, 2022, 29, 600-612.	5.7	20
3	Nanoparticle-based oral formulation can surprise you with inferior in vivo absorption in humans. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 177, 91-99.	4.3	1
4	Genome-wide association study identifies 48 common genetic variants associated with handedness. Nature Human Behaviour, 2021, 5, 59-70.	12.0	79
5	Combined Effect of the Preparation Method and Compression on the Physical Stability and Dissolution Behavior of Melt-Quenched Amorphous Celecoxib. Molecular Pharmaceutics, 2021, 18, 1408-1418.	4.6	6
6	Valorization of Native Soluble and Insoluble Oat Side Streams for Stable Suspensions and Emulsions. Food and Bioprocess Technology, 2021, 14, 751-764.	4.7	11
7	3D Printing of Drug Nanocrystals for Film Formulations. Molecules, 2021, 26, 3941.	3.8	29
8	Production of Itraconazole Nanocrystal-Based Polymeric Film Formulations for Immediate Drug Release. Pharmaceutics, 2020, 12, 960.	4.5	10
9	Nanosuspensions of a poorly soluble investigational molecule ODM-106: Impact of milling bead diameter and stabilizer concentration. International Journal of Pharmaceutics, 2020, 587, 119636.	5.2	22
10	Formulation optimization and in vitro characterization of rifampicin and ceftriaxone dual drug loaded niosomes with high energy probe sonication technique. Journal of Drug Delivery Science and Technology, 2020, 58, 101763.	3.0	23
11	Degrees of order: A comparison of nanocrystal and amorphous solids for poorly soluble drugs. International Journal of Pharmaceutics, 2020, 586, 119492.	5.2	28
12	Short-Stability Study of Rifaximin-Based Samples. Journal of AOAC INTERNATIONAL, 2020, 103, 743-746.	1.5	0
13	Principles of nanosized drug delivery systems. , 2020, , 3-25.		6
14	Surface Stabilization and Dissolution Rate Improvement of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All?. Molecular Pharmaceutics, 2020, 17, 1248-1260.	4.6	18
15	Centrifugal fractionation of softwood extracts improves the biorefinery workflow and yields functional emulsifiers. Green Chemistry, 2019, 21, 4691-4705.	9.0	27
16	Utilization of green formulation technique and efficacy estimation on cell line studies for dual anticancer drug therapy with niosomes. International Journal of Pharmaceutics, 2019, 572, 118764.	5.2	13
17	Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. Journal of Drug Delivery Science and Technology, 2019, 50, 27-33.	3.0	46
18	Environmentally-compatible alkyd paints stabilized by wood hemicelluloses. Industrial Crops and Products, 2019, 133, 212-220.	5.2	37

#	Article	IF	CITATIONS
19	Submission of Rifaximin to Different Techniques: Characterization, Solubility Study, and Microbiological Evaluation. AAPS PharmSciTech, 2019, 20, 125.	3.3	13
20	Cellâ€Nanoparticle Interactions at (Sub)–Nanometer Resolution Analyzed by Electron Microscopy and Correlative Coherent Antiâ€Stokes Raman Scattering. Biotechnology Journal, 2019, 14, 1800413.	3.5	5
21	Drug nanocrystals $\hat{a}\in$ Versatile option for formulation of poorly soluble materials. International Journal of Pharmaceutics, 2018, 537, 73-83.	5.2	103
22	Understanding Dissolution and Crystallization with Imaging: A Surface Point of View. Molecular Pharmaceutics, 2018, 15, 5361-5373.	4.6	24
23	High-Generation Amphiphilic Janus-Dendrimers as Stabilizing Agents for Drug Suspensions. Biomacromolecules, 2018, 19, 3983-3993.	5.4	11
24	Analytical tools for reliable in vitro and in vivo performance testing of drug nanocrystals. , 2018 , , $441-477$.		2
25	Design Space and QbD Approach for Production of Drug Nanocrystals by Wet Media Milling Techniques. Pharmaceutics, 2018, 10, 104.	4.5	51
26	Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Advanced Drug Delivery Reviews, 2018, 131, 101-115.	13.7	71
27	Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy. Pharmaceutical Research, 2017, 34, 957-970.	3.5	15
28	Insights into Caco-2 cell culture structure using coherent anti-Stokes Raman scattering (CARS) microscopy. International Journal of Pharmaceutics, 2017, 523, 270-280.	5.2	5
29	Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations. Analytical Chemistry, 2017, 89, 11460-11467.	6.5	20
30	Ultrasonic Processing Technique as a Green Preparation Approach for Diacerein-Loaded Niosomes. AAPS PharmSciTech, 2017, 18, 1554-1563.	3.3	32
31	Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability. Pharmaceutics, 2016, 8, 16.	4.5	161
32	Editorial, Special Issue BBBB. European Journal of Pharmaceutical Sciences, 2016, 95, 1.	4.0	0
33	Development and in-vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein. European Journal of Pharmaceutical Sciences, 2016, 95, 88-95.	4.0	46
34	The effect of surfactants on the dissolution behavior of amorphous formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 103, 13-22.	4.3	31
35	Production, applications and inÂvivo fate of drug nanocrystals. Journal of Drug Delivery Science and Technology, 2016, 34, 21-31.	3.0	30
36	Understanding Critical Quality Attributes for Nanocrystals from Preparation to Delivery. Molecules, 2015, 20, 22286-22300.	3.8	32

#	Article	IF	CITATIONS
37	Solid formulations by a nanocrystal approach: Critical process parameters regarding scale-ability of nanocrystals for tableting applications. International Journal of Pharmaceutics, 2015, 485, 77-86.	5.2	24
38	Differential scanning calorimetry predicts the critical quality attributes of amorphous glibenclamide. European Journal of Pharmaceutical Sciences, 2015, 80, 74-81.	4.0	20
39	Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal–cell interactions. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 338-348.	4.3	16
40	Interaction Studies Between Indomethacin Nanocrystals and PEO/PPO Copolymer Stabilizers. Pharmaceutical Research, 2015, 32, 628-639.	3.5	38
41	Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo. International Journal of Pharmaceutics, 2014, 467, 34-41.	5.2	99
42	Unravelling the Relationship between Degree of Disorder and the Dissolution Behavior of Milled Glibenclamide. Molecular Pharmaceutics, 2014, 11, 234-242.	4.6	25
43	Nanocrystal-based per-oral itraconazole delivery: Superior in vitro dissolution enhancement versus Sporanox® is not realized in in vivo drug absorption. Journal of Controlled Release, 2014, 180, 109-116.	9.9	63
44	Dissolution Studies of Poorly Soluble Drug Nanosuspensions in Non-sink Conditions. AAPS PharmSciTech, 2013, 14, 748-756.	3.3	103
45	Dissolution study of nanocrystal powders of a poorly soluble drug by UV imaging and channel flow methods. European Journal of Pharmaceutical Sciences, 2013, 50, 511-519.	4.0	38
46	Indomethacin: New Polymorphs of an Old Drug. Molecular Pharmaceutics, 2013, 10, 4472-4480.	4.6	120
47	Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. European Journal of Pharmaceutical Sciences, 2013, 50, 69-77.	4.0	209
48	Coated particle assemblies for the concomitant pulmonary administration of budesonide and salbutamol sulphate. International Journal of Pharmaceutics, 2013, 441, 248-254.	5.2	22
49	Drug Nanocrystals. , 2013, , 277-297.		0
50	Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matricesâ€"Enhanced stability and release. Journal of Controlled Release, 2011, 156, 390-397.	9.9	128
51	Intact Nanoparticulate Indomethacin in Fast-Dissolving Carrier Particles by Combined Wet Milling and Aerosol Flow Reactor Methods. Pharmaceutical Research, 2011, 28, 2403-2411.	3.5	41
52	Nanosuspensions of poorly soluble drugs: Preparation and development by wet milling. International Journal of Pharmaceutics, 2011, 411, 215-222.	5.2	181
53	Aerosol-processed polymeric drug nanoparticles for sustained and triggered drug release. Journal of Controlled Release, 2010, 148, e52-e53.	9.9	2
54	Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opinion on Drug Delivery, 2010, 7, 705-719.	5.0	123

#	Article	IF	CITATIONS
55	Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. Journal of Pharmacy and Pharmacology, 2010, 62, 1569-1579.	2.4	296
56	Multifunctional Hydrophobin: Toward Functional Coatings for Drug Nanoparticles. ACS Nano, 2010, 4, 1750-1758.	14.6	121
57	Solvent-Mediated Solid Phase Transformations of cArbamazepine: Effects of Simulated Intestinal Fluid and Fasted State Simulated Intestinal Fluid. Journal of Pharmaceutical Sciences, 2009, 98, 985-996.	3.3	49
58	Electrospray Encapsulation of Hydrophilic and Hydrophobic Drugs in Poly(<scp>L</scp> â€lactic acid) Nanoparticles. Small, 2009, 5, 1791-1798.	10.0	134
59	Simultaneous measurement of liquid-phase and solid-phase transformation kinetics in rotating disc and channel flow cell dissolution devices. International Journal of Pharmaceutics, 2008, 363, 66-72.	5.2	18
60	Physicochemical Characterization of Nano- and Microparticles. Current Nanoscience, 2008, 4, 101-107.	1.2	32
61	Effect of texture on the intrinsic dissolution behaviour of acetylsalicylic acid and tolbutamide compacts. Journal of Applied Crystallography, 2007, 40, 857-864.	4.5	7
62	Layer-by-layer polyelectrolyte coating of low molecular weight poly(lactic acid) nanoparticles. Colloids and Surfaces B: Biointerfaces, 2006, 49, 93-99.	5.0	40
63	In Situ Measurement of Solvent-Mediated Phase Transformations During Dissolution Testing. Journal of Pharmaceutical Sciences, 2006, 95, 2730-2737.	3.3	87
64	Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(I)lactide nanoparticles. AAPS PharmSciTech, 2004, 5, 115-120.	3.3	42
65	Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method. AAPS PharmSciTech, 2004, 5, 129-137.	3.3	31
66	Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(I)lactide nanoparticles. AAPS PharmSciTech, 2004, 5, 115-120.	3.3	35
67	Dissolution testing of acetylsalicylic acid by a channel flow method—correlation to USP basket and intrinsic dissolution methods. European Journal of Pharmaceutical Sciences, 2003, 19, 395-401.	4.0	26
68	The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(I)lactide. AAPS PharmSciTech, 2002, 3, E32.	3.3	62
69	The Effect of Temperature on Sorbitan Surfactant Monolayers. Journal of Colloid and Interface Science, 2001, 239, 134-138.	9.4	36