Bin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/557790/publications.pdf Version: 2024-02-01

RIN 7HI

#	Article	IF	CITATIONS
1	Lithium-plasmon-based low-powered dynamic color display. National Science Review, 2023, 10, .	9.5	8
2	The Seesaw Pattern of PM _{2.5} Interannual Anomalies Between Beijingâ€Tianjinâ€Hebei and Yangtze River Delta Across Eastern China in Winter. Geophysical Research Letters, 2022, 49, .	4.0	7
3	DOCK2 regulates antifungal immunity by regulating RAC GTPase activity. Cellular and Molecular Immunology, 2022, 19, 602-618.	10.5	9
4	Gene-Based Methods for Estimating the Degree of the Skewness of X Chromosome Inactivation. Genes, 2022, 13, 827.	2.4	0
5	Effects of different types of heat wave days on ozone pollution over Beijing-Tianjin-Hebei and its future projection. Science of the Total Environment, 2022, 837, 155762.	8.0	10
6	Study of Cycloxaprid Co-crystals: Characterization, Theory Calculation, Solubility, and Stability. Crystal Growth and Design, 2022, 22, 4437-4452.	3.0	8
7	Source apportionments of black carbon induced by local and regional transport in the atmospheric boundary layer of the Yangtze River Delta under stable weather conditions. Science of the Total Environment, 2022, 840, 156517.	8.0	2
8	Stable and transport indices applied to winter air pollution over the Yangtze River Delta, China. Environmental Pollution, 2021, 272, 115954.	7.5	18
9	Inconsistent urbanization effects on summer precipitation over the typical climate regions in central and eastern China. Theoretical and Applied Climatology, 2021, 143, 73-85.	2.8	9
10	Slow-Release Drug–Drug Cocrystals of Oxaliplatin with Flavonoids: Delaying Hydrolysis and Reducing Toxicity. Crystal Growth and Design, 2021, 21, 75-85.	3.0	22
11	The Effect of Aerosols on Fog Lifetime: Observational Evidence and Model Simulations. Geophysical Research Letters, 2021, 48, e2020GL61803.	4.0	6
12	Five novel MOFs with various dimensions as efficient catalysts for oxygen evolution reactions. CrystEngComm, 2021, 23, 5475-5480.	2.6	6
13	A series of novel Co(<scp>ii</scp>)-based MOFs: syntheses, structural diversity, and various properties. CrystEngComm, 2021, 23, 6376-6387.	2.6	6
14	Estimation of radiative forcing and heating rate based on vertical observation of black carbon in Nanjing, China. Science of the Total Environment, 2021, 756, 144135.	8.0	17
15	Simulation study on the indirect effect of sulfate on the summer climate over the eastern China monsoon region. Scientific Reports, 2021, 11, 8295.	3.3	5
16	A nucleotide-sensing endonuclease from the Gabija bacterial defense system. Nucleic Acids Research, 2021, 49, 5216-5229.	14.5	50
17	The Fast Response of the Atmospheric Water Cycle to Anthropogenic Black Carbon Aerosols during Summer in East Asia. Journal of Climate, 2021, 34, 3049-3065.	3.2	1
18	Insight into the Formation of Cocrystals of Flavonoids and 4,4′-Vinylenedipyridine: Heteromolecular Hydrogen Bonds, Molar Ratio, and Structural Analysis. Crystal Growth and Design, 2021, 21, 2720-2733.	3.0	12

#	Article	lF	CITATIONS
19	Observational Signal of the Interaction Between Mountain–Plain Wind and Urban Breeze Under Weak Synoptic Systems. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032809.	3.3	1
20	Threeâ€Dimensional Distribution of PM _{2.5} over the Yangtze River Delta as Cold Fronts Moving Through. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034035.	3.3	15
21	Analysis of the Effect of Optical Properties of Black Carbon on Ozone in an Urban Environment at the Yangtze River Delta, China. Advances in Atmospheric Sciences, 2021, 38, 1153-1164.	4.3	7
22	High-Efficiency Organic Contaminants Remover Based on Modulated Self-Assembly of Cobalt Metal–Organic Frameworks. Crystal Growth and Design, 2021, 21, 4305-4317.	3.0	8
23	A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase. RNA Biology, 2021, 18, 451-466.	3.1	8
24	SMINBR: An Integrated Network and Chemoinformatics Tool Specialized for Prediction of Two-Component Crystal Formation. Journal of Chemical Information and Modeling, 2021, 61, 4290-4302.	5.4	5
25	A New Approach for Simultaneous Estimation of Entrainment and Detrainment Rates in Nonâ€Precipitating Shallow Cumulus. Geophysical Research Letters, 2021, 48, e2021GL093817.	4.0	10
26	A Bifunctional "Offâ€On―Fluorescence Probe Based on Naphthalene for the Detection of Ag ⁺ and Al ³⁺ and Its Application in Practical Water Samples, as a Logic gate and as Test Paper. ChemistrySelect, 2021, 6, 8830-8838.	1.5	4
27	A black carbon peak and its sources in the free troposphere of Beijing induced by cyclone lifting and transport from central China. Atmospheric Chemistry and Physics, 2021, 21, 15555-15567.	4.9	2
28	Longâ€Term Variation and Source Apportionment of Black Carbon at Mt. Waliguan, China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035273.	3.3	5
29	Molecular Dissection of the Primase and Polymerase Activities of Deep-Sea Phage NrS-1 Primase-Polymerase. Frontiers in Microbiology, 2021, 12, 766612.	3.5	2
30	Characterization and Source Apportionment of Fine Particles during a Heavy Pollution Episode over the Yangtze River Delta, China. Atmosphere, 2020, 11, 720.	2.3	4
31	Strategy for Efficient Discovery of Cocrystals via a Network-Based Recommendation Model. Crystal Growth and Design, 2020, 20, 6820-6830.	3.0	17
32	One water-stable magnetic coordination polymer material (Fe ₃ O ₄ @PmPD–[Co-BT]) as an efficient adsorbent for rapid dye removal. New Journal of Chemistry, 2020, 44, 20626-20633.	2.8	4
33	Regional and Sectoral Sources for Black Carbon Over South China in Spring and Their Sensitivity to East Asian Summer Monsoon Onset. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033219.	3.3	9
34	Ozone pollution over China and India: seasonality and sources. Atmospheric Chemistry and Physics, 2020, 20, 4399-4414.	4.9	79
35	Annual variations of black carbon over the Yangtze River Delta from 2015 to 2018. Journal of Environmental Sciences, 2020, 96, 72-84.	6.1	22
36	Real-time geochemistry of urban aerosol during a heavy dust episode by single-particle aerosol mass spectrometer: Spatio-temporal variability, mixing state and spectral distribution. Particuology, 2020, 53, 197-207.	3.6	4

#	Article	IF	CITATIONS
37	To what extents do urbanization and air pollution affect fog?. Atmospheric Chemistry and Physics, 2020, 20, 5559-5572.	4.9	25
38	Zn-MOFs based luminescent sensors for selective and highly sensitive detection of Fe3+ and tetracycline antibiotic. Journal of Pharmaceutical and Biomedical Analysis, 2020, 188, 113444.	2.8	32
39	Atmospheric heating rate due to black carbon aerosols: Uncertainties and impact factors. Atmospheric Research, 2020, 240, 104891.	4.1	26
40	Optical Properties of Aerosols and Chemical Composition Apportionment under Different Pollution Levels in Wuhan during January 2018. Atmosphere, 2020, 11, 17.	2.3	6
41	Characteristics of Aerosol during a Severe Haze-Fog Episode in the Yangtze River Delta: Particle Size Distribution, Chemical Composition, and Optical Properties. Atmosphere, 2020, 11, 56.	2.3	12
42	Characteristics of Volatile Organic Compounds in Nanjing and Suzhou, Two Urban Sites in the Yangtze River Delta, China. Archives of Environmental Contamination and Toxicology, 2020, 78, 416-429.	4.1	6
43	The Cyclic Oligoadenylate Signaling Pathway of Type III CRISPR-Cas Systems. Frontiers in Microbiology, 2020, 11, 602789.	3.5	9
44	Establishment of Conceptual Schemas of Surface Synoptic Meteorological Situations Affecting Fine Particulate Pollution Across Eastern China in the Winter. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033153.	3.3	24
45	What have we missed when studying the impact of aerosols on surface ozone via changing photolysis rates?. Atmospheric Chemistry and Physics, 2020, 20, 10831-10844.	4.9	38
46	The Observation Path Problems and the Formation Conditions of the Elevated Layer of Black Carbon Aerosol. Atmosphere, 2020, 11, 481.	2.3	0
47	Inter-annual variability in fine particulate matter pollution over China during 2013–2018: Role of meteorology. Atmospheric Environment, 2019, 214, 116842.	4.1	46
48	Enhancing the solubility of natural compound xanthotoxin by modulating stability via corrystallization engineering. International Journal of Pharmaceutics, 2019, 572, 118776.	5.2	12
49	Klebsiella Phage KP34 RNA Polymerase and Its Use in RNA Synthesis. Frontiers in Microbiology, 2019, 10, 2487.	3.5	9
50	Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China. Atmospheric Chemistry and Physics, 2019, 19, 3673-3685.	4.9	78
51	Chemical composition of dew water at a suburban site in Nanjing, China, during the 2016–2017 winter. Atmospheric Environment, 2019, 211, 226-233.	4.1	15
52	PM2.5 vertical variation during a fog episode in a rural area of the Yangtze River Delta, China. Science of the Total Environment, 2019, 685, 555-563.	8.0	19
53	Intercomparison of Soil Moisture Retrieved from GNSS-R and from Passive L-Band Radiometry at the Valencia Anchor Station. Sensors, 2019, 19, 1900.	3.8	8
54	Optical Properties and Radiative Forcing of Aged BC due to Hygroscopic Growth: Effects of the Aggregate Structure. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4620-4633.	3.3	27

Вім Ζни

#	Article	IF	CITATIONS
55	Two Inversion Layers and Their Impacts on PM2.5 Concentration over the Yangtze River Delta, China. Journal of Applied Meteorology and Climatology, 2019, 58, 2349-2362.	1.5	14
56	Crystal structure and physical stability of ginsenoside compound-K solvates. CrystEngComm, 2019, 21, 7313-7321.	2.6	6
57	Study on pollution behavior and sulfate formation during the typical haze event in Nanjing with water soluble inorganic ions and sulfur isotopes. Atmospheric Research, 2019, 217, 198-207.	4.1	29
58	Longâ€Term Fog Variation and Its Impact Factors Over Polluted Regions of East China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1741-1754.	3.3	14
59	Vertical distributions of black carbon aerosols over rural areas of the Yangtze River Delta in winter. Science of the Total Environment, 2019, 661, 1-9.	8.0	29
60	Natural and anthropogenic contributions to long-term variations of SO2, NO2, CO, and AOD over East China. Atmospheric Research, 2019, 215, 284-293.	4.1	55
61	Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Climate Dynamics, 2019, 52, 181-196.	3.8	36
62	On Which Microphysical Time Scales to Use in Studies of Entrainmentâ€Mixing Mechanisms in Clouds. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3740-3756.	3.3	23
63	Comparison of parameterizations for the atmospheric extinction coefficient in Lin'an, China. Science of the Total Environment, 2018, 621, 507-515.	8.0	14
64	Measurement of ambient aerosols by single particle mass spectrometry in the Yangtze River Delta, China: Seasonal variations, mixing state and meteorological effects. Atmospheric Research, 2018, 213, 562-575.	4.1	14
65	Quantifying Arctic lower stratospheric ozone sources in winter and spring. Scientific Reports, 2018, 8, 8934.	3.3	1
66	Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China. Atmospheric Chemistry and Physics, 2018, 18, 7081-7094.	4.9	58
67	Deep-sea vent phage DNA polymerase specifically initiates DNA synthesis in the absence of primers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2310-E2318.	7.1	26
68	Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China. Archives of Environmental Contamination and Toxicology, 2017, 72, 335-348.	4.1	69
69	Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process. Environmental Science and Pollution Research, 2017, 24, 14525-14536.	5.3	31
70	Spatial and Temporal Distributions of Air Pollutants and Size Distribution of Aerosols over Central and Eastern China. Archives of Environmental Contamination and Toxicology, 2017, 72, 481-495.	4.1	8
71	Optical properties of black carbon aggregates with non-absorptive coating. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187, 443-452.	2.3	45
72	Source Apportionment of Tropospheric Ozone by Chemical Transport Model: From Global to City Cluster. , 2017, , 191-217.		0

#	Article	IF	CITATIONS
73	Impact of Taihu Lake on city ozone in the Yangtze River Delta. Advances in Atmospheric Sciences, 2017, 34, 226-234.	4.3	13
74	Seasonal variation of columnar aerosol optical properties and radiative forcing over Beijing, China. Atmospheric Environment, 2017, 166, 340-350.	4.1	38
75	Aerosol and boundary-layer interactions and impact on air quality. National Science Review, 2017, 4, 810-833.	9.5	524
76	Analysis of extinction properties as a function of relative humidity using a <i>l̂º</i> -EC-Mie model in Nanjing. Atmospheric Chemistry and Physics, 2017, 17, 4147-4157.	4.9	16
77	Characteristics of Carbonaceous Aerosol in a Typical Industrial City—Nanjing in Yangtze River Delta, China: Size Distributions, Seasonal Variations, and Sources. Atmosphere, 2017, 8, 73.	2.3	15
78	Source apportionment of atmospheric water over East Asia – a source tracer study in CAM5.1. Geoscientific Model Development, 2017, 10, 673-688.	3.6	24
79	Simulation of tropical tropospheric ozone variation from 1982 to 2010: The meteorological impact of two types of ENSO event. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9220-9236.	3.3	6
80	Analysis of the seasonal ozone budget and the impact of the summer monsoon on the northeastern Qinghaiâ€īibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2029-2042.	3.3	17
81	The impact of the direct effects of sulfate and black carbon aerosols on the subseasonal march of the East Asian subtropical summer monsoon. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2610-2625.	3.3	6
82	One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: Sources, seasonal and diurnal variations. Chemosphere, 2016, 148, 526-536.	8.2	69
83	Temporal Variations of O3 and NO x in the Urban Background Atmosphere of Nanjing, East China. Archives of Environmental Contamination and Toxicology, 2016, 71, 224-234.	4.1	21
84	A case study of surface ozone source apportionment during a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China. Science of the Total Environment, 2016, 544, 853-863.	8.0	97
85	Measurement and analysis of surface aerosol optical properties over urban Nanjing in the Chinese Yangtze River Delta. Science of the Total Environment, 2016, 542, 277-291.	8.0	37
86	Impact of Shanghai urban land surface forcing on downstream city ozone chemistry. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4340-4351.	3.3	49
87	Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. Environmental Science and Pollution Research, 2015, 22, 19607-19617.	5.3	68
88	Characteristics of new particle formation events in Nanjing, China: Effect of water-soluble ions. Atmospheric Environment, 2015, 108, 32-40.	4.1	34
89	Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources. Atmospheric Environment, 2015, 123, 370-379.	4.1	69
90	Mixing state of individual carbonaceous particles during a severe haze episode in January 2013, Nanjing, China. Particuology, 2015, 20, 16-23.	3.6	23

#	Article	IF	CITATIONS
91	The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region. Science of the Total Environment, 2015, 502, 641-649.	8.0	20
92	Source apportionment of VOCs in a suburb of Nanjing, China, in autumn and winter. Journal of Atmospheric Chemistry, 2014, 71, 175-193.	3.2	32
93	Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation. Atmospheric Research, 2014, 150, 42-56.	4.1	50
94	Impact of Megacity Shanghai on the Urban Heat-Island Effects over the Downstream City Kunshan. Boundary-Layer Meteorology, 2014, 152, 411-426.	2.3	25
95	Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region. Atmospheric Environment, 2014, 94, 734-741.	4.1	16
96	Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta, China. Science of the Total Environment, 2014, 490, 501-508.	8.0	89
97	Analysis of a long-lasting haze episode in Nanjing, China. Atmospheric Research, 2013, 120-121, 78-87.	4.1	146
98	Aerosol spectra and new particle formation observed in various seasons in Nanjing. Advances in Atmospheric Sciences, 2013, 30, 1632-1644.	4.3	26
99	Diagnostics for a Linear Model with First-Order Autoregressive Symmetrical Errors. Communications in Statistics - Theory and Methods, 2013, 42, 2335-2350.	1.0	1
100	Size distributions of aerosol and water-soluble ions in Nanjing during a crop residual burning event. Journal of Environmental Sciences, 2012, 24, 1457-1465.	6.1	20
101	Investigation on the direct radiative effect of fossil fuel black-carbon aerosol over China. Theoretical and Applied Climatology, 2011, 104, 301-312.	2.8	39
102	Seasonal variation of columnar aerosol optical properties in Yangtze River Delta in China. Advances in Atmospheric Sciences, 2011, 28, 1326-1335.	4.3	29
103	Seasonal variability of aerosol optical properties over Beijing. Atmospheric Environment, 2009, 43, 4095-4101.	4.1	75
104	Ground-based observation of aerosol optical properties in Lanzhou, China. Journal of Environmental Sciences, 2009, 21, 1519-1524.	6.1	18
105	Applying fuzzy multiple attributes decision making for product configuration. Journal of Intelligent Manufacturing, 2008, 19, 591-598.	7.3	38
106	Why does surface ozone peak in summertime at Waliguan?. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	69