Tsunenobu Kimoto

List of Publications by Citations

Source: https://exaly.com/author-pdf/5577781/tsunenobu-kimoto-publications-by-citations.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 456
 12,059
 56
 92

 papers
 citations
 h-index
 g-index

 487
 13,517
 2.4
 6.94

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
456	Material science and device physics in SiC technology for high-voltage power devices. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 040103	1.4	558
455	Step-controlled epitaxial growth of SiC: High quality homoepitaxy. <i>Materials Science and Engineering Reports</i> , 1997 , 20, 125-166	30.9	457
454	2014,		391
453	Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy. <i>Physica Status Solidi A</i> , 1997 , 162, 199-225		330
452	Power Conversion With SiC Devices at Extremely High Ambient Temperatures. <i>IEEE Transactions on Power Electronics</i> , 2007 , 22, 1321-1329	7.2	193
451	Negative-U system of carbon vacancy in 4H-SiC. <i>Physical Review Letters</i> , 2012 , 109, 187603	7.4	176
450	High performance of high-voltage 4H-SiC Schottky barrier diodes. <i>IEEE Electron Device Letters</i> , 1995 , 16, 280-282	4.4	176
449	High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (112~0) face. <i>IEEE Electron Device Letters</i> , 1999 , 20, 611-613	4.4	175
448	Performance limiting surface defects in SiC epitaxial p-n junction diodes. <i>IEEE Transactions on Electron Devices</i> , 1999 , 46, 471-477	2.9	167
447	Interface Properties of Metal Dxide Bemiconductor Structures on 4H-SiC (0001) and (11bar20) Formed by N2O Oxidation. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 1213-1218	1.4	159
446	Investigation of carrier lifetime in 4H-SiC epilayers and lifetime control by electron irradiation. <i>Applied Physics Letters</i> , 2007 , 90, 202109	3.4	158
445	Reduction of Deep Levels and Improvement of Carrier Lifetime in n-Type 4H-SiC by Thermal Oxidation. <i>Applied Physics Express</i> , 2009 , 2, 041101	2.4	150
444	Step bunching mechanism in chemical vapor deposition of 6HIand 4HBiC{0001}. <i>Journal of Applied Physics</i> , 1997 , 81, 3494-3500	2.5	144
443	Surface kinetics of adatoms in vapor phase epitaxial growth of SiC on 6H-SiC{0001} vicinal surfaces. Journal of Applied Physics, 1994 , 75, 850-859	2.5	142
442	Growth mechanism of 6H-SiC in step-controlled epitaxy. <i>Journal of Applied Physics</i> , 1993 , 73, 726-732	2.5	138
441	Characterization of in-grown stacking faults in 4HBiC (0001) epitaxial layers and its impacts on high-voltage Schottky barrier diodes. <i>Applied Physics Letters</i> , 2005 , 87, 051912	3.4	125
440	Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO/sub 2//SiC MOS system and MOSFET's. <i>IEEE Transactions on Electron Devices</i> , 1999 , 46, 504-510	2.9	124

439	Step-Controlled Epitaxial Growth of High-Quality SiC Layers. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 202, 247-262	1.3	123	
438	Electronic behaviors of high-dose phosphorus-ion implanted 4HBiC (0001). <i>Journal of Applied Physics</i> , 2004 , 96, 224-228	2.5	123	
437	Excellent reverse blocking characteristics of high-voltage 4H-SiC Schottky rectifiers with boron-implanted edge termination. <i>IEEE Electron Device Letters</i> , 1996 , 17, 139-141	4.4	123	
436	Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons. <i>Journal of Applied Physics</i> , 2006 , 100, 113728	2.5	119	
435	Step bunching in chemical vapor deposition of 6HIand 4HBiC on vicinal SiC(0001) faces. <i>Applied Physics Letters</i> , 1995 , 66, 3645-3647	3.4	117	
434	Reduction of doping and trap concentrations in 4HBiC epitaxial layers grown by chemical vapor deposition. <i>Applied Physics Letters</i> , 2001 , 79, 2761-2763	3.4	115	
433	Generation of very fast states by nitridation of the SiO2/SiC interface. <i>Journal of Applied Physics</i> , 2012 , 112, 024520	2.5	111	
432	Nearly Ideal CurrentMoltage Characteristics of Schottky Barrier Diodes Formed on Hydride-Vapor-Phase-Epitaxy-Grown GaN Free-Standing Substrates. <i>Applied Physics Express</i> , 2010 , 3, 101003	2.4	106	
431	Nitrogen donors and deep levels in high-quality 4HBiC epilayers grown by chemical vapor deposition. <i>Applied Physics Letters</i> , 1995 , 67, 2833-2835	3.4	101	
430	Lifetime-killing defects in 4H-SiC epilayers and lifetime control by low-energy electron irradiation. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 1327-1336	1.3	96	
429	Characterization of stacking faults in 4H-SiC epilayers by room-temperature microphotoluminescence mapping. <i>Applied Physics Letters</i> , 2008 , 92, 221906	3.4	92	
428	Accurate evaluation of interface state density in SiC metal-oxide-semiconductor structures using surface potential based on depletion capacitance. <i>Journal of Applied Physics</i> , 2012 , 111, 014502	2.5	90	
427	Formation of periodic steps with a unit-cell height on 6HBiC (0001) surface by HCl etching. <i>Applied Physics Letters</i> , 2000 , 76, 3412-3414	3.4	89	
426	Ultrahigh-Voltage SiC p-i-n Diodes With Improved Forward Characteristics. <i>IEEE Transactions on Electron Devices</i> , 2015 , 62, 374-381	2.9	88	
425	21-kV SiC BJTs With Space-Modulated Junction Termination Extension. <i>IEEE Electron Device Letters</i> , 2012 , 33, 1598-1600	4.4	82	
424	Nitrogen Ion Implantation into ÆiC Epitaxial Layers. <i>Physica Status Solidi A</i> , 1997 , 162, 263-276		80	
423	Deep level transient spectroscopy on as-grown and electron-irradiated p-type 4H-SiC epilayers. Journal of Applied Physics, 2007 , 101, 103704	2.5	78	
422	Space-Modulated Junction Termination Extension for Ultrahigh-Voltage p-i-n Diodes in 4H-SiC. <i>IEEE Transactions on Electron Devices</i> , 2012 , 59, 414-418	2.9	76	

421	A cause for highly improved channel mobility of 4H-SiC metal®xide®emiconductor field-effect transistors on the (112 0) face. <i>Applied Physics Letters</i> , 2001 , 78, 374-376	3.4	76
420	Temperature and doping dependencies of electrical properties in Al-doped 4H-SiC epitaxial layers. <i>Journal of Applied Physics</i> , 2009 , 106, 013716	2.5	73
419	. IEEE Electron Device Letters, 1993 , 14, 548-550	4.4	73
418	Terrace growth and polytype development in epitaxial EsiC films on EsiC (6H and 15R) substrates. Journal of Materials Research, 1994 , 9, 940-954	2.5	72
417	Incorporation mechanism of N, Al, and B impurities in chemical vapor deposition of SiC. <i>Applied Physics Letters</i> , 1995 , 67, 2385-2387	3.4	71
416	High-quality 4H-SiC homoepitaxial layers grown by step-controlled epitaxy. <i>Applied Physics Letters</i> , 1994 , 65, 1400-1402	3.4	70
415	Bulk and epitaxial growth of silicon carbide. <i>Progress in Crystal Growth and Characterization of Materials</i> , 2016 , 62, 329-351	3.5	66
414	A 3 kV Schottky barrier diode in 4H-SiC. <i>Applied Physics Letters</i> , 1998 , 72, 445-447	3.4	66
413	The effects of N+ dose in implantation into 6h-sic epilayers. <i>Journal of Electronic Materials</i> , 1995 , 24, 235-240	1.9	66
412	Electrical activation of high-concentration aluminum implanted in 4H-SiC. <i>Journal of Applied Physics</i> , 2004 , 96, 4916-4922	2.5	63
411	Midgap levels in both n- and p-type 4HBiC epilayers investigated by deep level transient spectroscopy. <i>Applied Physics Letters</i> , 2005 , 86, 122104	3.4	63
410	Impacts of recombination at the surface and in the substrate on carrier lifetimes of n-type 4HBiC epilayers. <i>Journal of Applied Physics</i> , 2010 , 108, 083721	2.5	60
409	Triple Shockley type stacking faults in 4H-SiC epilayers. <i>Applied Physics Letters</i> , 2009 , 94, 091910	3.4	60
408	Simulation and Experimental Study on the Junction Termination Structure for High-Voltage 4H-SiC PiN Diodes. <i>IEEE Transactions on Electron Devices</i> , 2008 , 55, 1841-1846	2.9	60
407	Surface diffusion lengths of adatoms on 6H-SiC{0001} faces in chemical vapor deposition of SiC. <i>Journal of Applied Physics</i> , 1995 , 78, 3132-3137	2.5	60
406	Nucleation and step motion in chemical vapor deposition of SiC on 6H-SiC{0001} faces. <i>Journal of Applied Physics</i> , 1994 , 76, 7322-7327	2.5	60
405	4H-SiC MISFETs with nitrogen-containing insulators. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2009 , 206, 2374-2390	1.6	58
404	Shallow states at SiO2/4H-SiC interface on (112 0) and (0001) faces. <i>Applied Physics Letters</i> , 2002 , 81, 301-303	3.4	58

(2011-1996)

4	403	Aluminum and boron ion implantations into 6H-SiC epilayers. <i>Journal of Electronic Materials</i> , 1996 , 25, 879-884	1.9	58	
4	402	Analytical model for reduction of deep levels in SiC by thermal oxidation. <i>Journal of Applied Physics</i> , 2012 , 111, 053710	2.5	57	
2	401	Alternative techniques to reduce interface traps in n-type 4H-SiC MOS capacitors. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 1378-1389	1.3	56	
4	400	Characterization of major in-grown stacking faults in 4H-SiC epilayers. <i>Physica B: Condensed Matter</i> , 2009 , 404, 4745-4748	2.8	55	
3	399	Impact Ionization Coefficients in 4H-SiC Toward Ultrahigh-Voltage Power Devices. <i>IEEE Transactions on Electron Devices</i> , 2015 , 62, 3326-3333	2.9	53	
3	398	Current status and perspectives of ultrahigh-voltage SiC power devices. <i>Materials Science in Semiconductor Processing</i> , 2018 , 78, 43-56	4.3	53	
3	397	Growth of Shockley type stacking faults upon forward degradation in 4H-SiC p-i-n diodes. <i>Journal of Applied Physics</i> , 2016 , 119, 095711	2.5	53	
<u>:</u>	396	Detection and depth analyses of deep levels generated by ion implantation in n- and p-type 4H-SiC. <i>Journal of Applied Physics</i> , 2009 , 106, 013719	2.5	53	
3	395	Fast homoepitaxial growth of 4H-SiC with low basal-plane dislocation density and low trap concentration by hot-wall chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2007 , 306, 297-302	1.6	53	
3	394	Interface Properties of 4H-SiC (\$11bar {2}0\$) and (\$1bar {1}00\$) MOS Structures Annealed in NO. <i>IEEE Transactions on Electron Devices</i> , 2015 , 62, 309-315	2.9	52	
3	393	Development of Ultrahigh-Voltage SiC Devices. <i>IEEE Transactions on Electron Devices</i> , 2015 , 62, 396-404	- 2.9	52	
3	392	Radiation-induced defect centers in 4H silicon carbide. <i>Diamond and Related Materials</i> , 1997 , 6, 1333-13	337. 5	50	
3	391	4H-polytype AlN grown on 4H-SiC(112 0) substrate by polytype replication. <i>Applied Physics Letters</i> , 2003 , 83, 5208-5210	3.4	49	
3	390	Effects of Nitridation on 4H-SiC MOSFETs Fabricated on Various Crystal Faces. <i>IEEE Transactions on Electron Devices</i> , 2013 , 60, 1260-1262	2.9	48	
1	389	Measuring Terminal Capacitance and Its Voltage Dependency for High-Voltage Power Devices. <i>IEEE Transactions on Power Electronics</i> , 2009 , 24, 1486-1493	7.2	48	
3	388	Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes. <i>Journal of Applied Physics</i> , 2016 , 120, 115101	2.5	47	
3	387	Design and Fabrication of GaN p-n Junction Diodes With Negative Beveled-Mesa Termination. <i>IEEE Electron Device Letters</i> , 2019 , 40, 941-944	4.4	45	
3	386	Formation of a semi-insulating layer in n-type 4H-SiC by electron irradiation. <i>Applied Physics Letters</i> , 2011 , 98, 262106	3.4	45	

385	High-purity and high-quality 4HBiC grown at high speed by chimney-type vertical hot-wall chemical vapor deposition. <i>Applied Physics Letters</i> , 2002 , 80, 1586-1588	3.4	45
384	Investigation on origin of Z1/2 center in SiC by deep level transient spectroscopy and electron paramagnetic resonance. <i>Applied Physics Letters</i> , 2013 , 102, 112106	3.4	44
383	Epitaxial growth of 4HBiC on 4½ off-axis (0 0 0 1) and (0 0 0 1½) substrates by hot-wall chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2006 , 291, 370-374	1.6	44
382	Defect engineering in SiC technology for high-voltage power devices. <i>Applied Physics Express</i> , 2020 , 13, 120101	2.4	44
381	4H-SiC BJTs With Record Current Gains of 257 on (0001) and 335 on (\$ hbox{000}bar{hbox{1}}\$). <i>IEEE Electron Device Letters</i> , 2011 , 32, 841-843	4.4	43
380	Carrier Recombination in n-Type 4H-SiC Epilayers with Long Carrier Lifetimes. <i>Applied Physics Express</i> , 2012 , 5, 101301	2.4	43
379	High temperature annealing of n-type 4H-SiC: Impact on intrinsic defects and carrier lifetime. <i>Journal of Applied Physics</i> , 2012 , 111, 033515	2.5	43
378	Homoepitaxy of 6HBiC on nearly on-axis (0 0 0 1) faces by chemical vapor deposition Part I: Effect of C/Si ratio on wide-area homoepitaxy without 3CBiC inclusions. <i>Journal of Crystal Growth</i> , 2003 , 256, 341-346	1.6	42
377	Sources of carrier compensation in metalorganic vapor phase epitaxy-grown homoepitaxial n-type GaN layers with various doping concentrations. <i>Applied Physics Express</i> , 2018 , 11, 041001	2.4	41
376	Stability of deep centers in 4H-SiC epitaxial layers during thermal annealing. <i>Applied Physics Letters</i> , 2004 , 85, 1716-1718	3.4	41
375	Crystallographic defects under device-killing surface faults in a homoepitaxially grown film of SiC. <i>Materials Science & Materials: Properties, Microstructure and Processing</i> , 2003 , 361, 67-74	5.3	41
374	Formation of semi-insulating 6H-SiC layers by vanadium ion implantations. <i>Applied Physics Letters</i> , 1996 , 69, 1113-1115	3.4	40
373	Negative-U carbon vacancy in 4H-SiC: Assessment of charge correction schemes and identification of the negative carbon vacancy at the quasicubic site. <i>Physical Review B</i> , 2013 , 88,	3.3	39
372	Al+ and B+ implantations into 6H-SiC epilayers and application to pn junction diodes. <i>Journal of Electronic Materials</i> , 1998 , 27, 358-364	1.9	38
371	Thermal instability effects in SiC Power MOSFETs. <i>Microelectronics Reliability</i> , 2012 , 52, 2414-2419	1.2	37
370	Impacts of growth parameters on deep levels in n-type 4H-SiC. Journal of Applied Physics, 2007, 101, 05	37.69	37
369	Anisotropy in breakdown field of 4HBiC. <i>Applied Physics Letters</i> , 2002 , 80, 3355-3357	3.4	37
368	P-Channel MOSFETs on 4H-SiC {0001} and Nonbasal Faces Fabricated by Oxide Deposition and \$hbox{N}_{2}hbox{O}\$ Annealing. IEEE Transactions on Electron Devices, 2009, 56, 1953-1958	2.9	36

367	Low-loss, high-voltage 6H-SiC epitaxial p-i-n diode. <i>IEEE Transactions on Electron Devices</i> , 2002 , 49, 150	-154)	36	
366	Effects of C/Si ratio in fast epitaxial growth of 4HBiC(0 0 0 1) by vertical hot-wall chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2005 , 281, 370-376	1.6	36	
365	Experimental and theoretical investigations on short-channel effects in 4H-SiC MOSFETs. <i>IEEE Transactions on Electron Devices</i> , 2005 , 52, 1954-1962	2.9	36	
364	Topographic study of dislocation structure in hexagonal SiC single crystals with low dislocation density. <i>Journal of Crystal Growth</i> , 2007 , 304, 57-63	1.6	35	
363	4HBiC Lateral Double RESURF MOSFETs With Low on Resistance. <i>IEEE Transactions on Electron Devices</i> , 2007 , 54, 1216-1223	2.9	35	
362	Major deep levels with the same microstructures observed in n-type 4HBiC and 6HBiC. <i>Journal of Applied Physics</i> , 2011 , 109, 013705	2.5	34	
361	High-quality nonpolar 4H-AlN grown on 4H-SiC (112 \square 0) substrate by molecular-beam epitaxy. <i>Applied Physics Letters</i> , 2006 , 89, 112117	3.4	34	
360	Remarkable lattice recovery and low sheet resistance of phosphorus-implanted 4HBiC (112 0). <i>Applied Physics Letters</i> , 2002 , 80, 240-242	3.4	34	
359	Traps at the SiC/SiO2-Interface. Materials Research Society Symposia Proceedings, 2000, 640, 1		34	
358	Quantitative comparison between Z1½ center and carbon vacancy in 4H-SiC. <i>Journal of Applied Physics</i> , 2014 , 115, 143705	2.5	33	
357	Breakdown Characteristics of 15-kV-Class 4H-SiC PiN Diodes With Various Junction Termination Structures. <i>IEEE Transactions on Electron Devices</i> , 2012 , 59, 2748-2752	2.9	33	
356	Enhancement and control of carrier lifetimes in p-type 4H-SiC epilayers. <i>Journal of Applied Physics</i> , 2012 , 112, 064503	2.5	32	
355	Deep levels induced by reactive ion etching in n- and p-type 4HBiC. <i>Journal of Applied Physics</i> , 2010 , 108, 023706	2.5	32	
354	1580-V¼0-\$hbox{m}Omegacdot hbox{cm}^{2}\$ Double-RESURF MOSFETs on 4H-SiC \$(hbox{000}bar{hbox{1}})\$. <i>IEEE Electron Device Letters</i> , 2009 , 30, 831-833	4.4	32	
353	Epitaxy of nonpolar AlN on 4H-SiC (1-100) substrates. <i>Applied Physics Letters</i> , 2006 , 88, 011908	3.4	32	
352	Growth and characterization of 4HBiC in vertical hot-wall chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2003 , 255, 136-144	1.6	32	
351	Improvement of Current Gain in 4H-SiC BJTs by Surface Passivation With Deposited Oxides Nitrided in \$hbox{N}_{2}hbox{O}\$ or NO. <i>IEEE Electron Device Letters</i> , 2011 , 32, 285-287	4.4	30	
350	Effects of C/Si Ratio in Chemical Vapor Deposition of 4H-SiC(11bar20) and (03bar38). <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 7294-7295	1.4	30	

349	Carrier compensation near tail region in aluminum- or boron-implanted 4HBiC (0001). <i>Journal of Applied Physics</i> , 2005 , 98, 043709	2.5	30
348	Injected carrier concentration dependence of the expansion of single Shockley-type stacking faults in 4H-SiC PiN diodes. <i>Journal of Applied Physics</i> , 2018 , 123, 025707	2.5	30
347	Reduction of Double Positioning Twinning in 3C-SiC Grown on EsiC Substrates. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 5202-5207	1.4	29
346	Deep-level transient spectroscopy studies of electron and hole traps in n-type GaN homoepitaxial layers grown by quartz-free hydride-vapor-phase epitaxy. <i>Applied Physics Letters</i> , 2019 , 115, 012103	3.4	28
345	Reduction of deep levels generated by ion implantation into n- and p-type 4HBiC. <i>Journal of Applied Physics</i> , 2010 , 108, 033706	2.5	28
344	High Channel Mobility in Inversion Layer of SiC MOSFETs for Power Switching Transistors. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 2008-2011	1.4	28
343	Temperature and injection level dependencies and impact of thermal oxidation on carrier lifetimes in p-type and n-type 4HBiC epilayers. <i>Journal of Applied Physics</i> , 2011 , 109, 014505	2.5	27
342	SiC technologies for future energy electronics 2010 ,		27
341	Low-Concentration Deep Traps in 4H-SiC Grown with High Growth Rate by Chemical Vapor Deposition. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, L969-L971	1.4	27
340	1330 V, 67 m/spl Omega//spl middot/cm/sup 2/ 4H-SiC(0001) RESURF MOSFET. <i>IEEE Electron Device Letters</i> , 2005 , 26, 649-651	4.4	27
339	Control of carrier lifetime of thick n-type 4H-SiC epilayers by high-temperature Ar annealing. <i>Applied Physics Express</i> , 2016 , 9, 061303	2.4	27
338	Effect of C/Si Ratio on Spiral Growth on 6H-SiC (0001). Japanese Journal of Applied Physics, 2003, 42, L8	34 6. 484	4826
337	Promise and Challenges of High-Voltage SiC Bipolar Power Devices. <i>Energies</i> , 2016 , 9, 908	3.1	26
336	Carbon ejection from a SiO2/SiC(0001) interface by annealing in high-purity Ar. <i>Applied Physics Letters</i> , 2017 , 111, 062101	3.4	25
335	Understanding and reduction of degradation phenomena in SiC power devices 2017,		25
334	Characterization of very fast states in the vicinity of the conduction band edge at the SiO2/SiC interface by low temperature conductance measurements. <i>Journal of Applied Physics</i> , 2014 , 115, 01450)2 ^{2.5}	25
333	Engineering the band gap of SiC nanotubes with a transverse electric field. <i>Applied Physics Letters</i> , 2010 , 97, 043108	3.4	25
332	Over-700-nm Critical Thickness of AlN Grown on 6H-SiC(0001) by Molecular Beam Epitaxy. <i>Applied Physics Express</i> , 2012 , 5, 105502	2.4	25

331	A Study on SiC Devices in Synchronous Rectification of DC-DC Converter. <i>IEEE Applied Power Electronics Conference and Exposition</i> , 2007 ,		25	
330	Deposition of high-quality a-Si:H by direct photodecomposition of Si2H6 using vacuum ultraviolet light. <i>Journal of Applied Physics</i> , 1988 , 64, 2380-2383	2.5	25	
329	Ultrahigh-Voltage SiC MPS Diodes With Hybrid Unipolar/Bipolar Operation. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 874-881	2.9	24	
328	Impact of NO Annealing on Flatband Voltage Instability due to Charge Trapping in SilMOS Devices. <i>Materials Science Forum</i> , 2016 , 858, 599-602	0.4	24	
327	Carrier lifetime and breakdown phenomena in SiC power device material. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 363001	3	24	
326	Robust 4HBiC pn Diodes Fabricated using (11bar20) Face. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 471-476	1.4	24	
325	Interface state density of SiO2/p-type 4H-SiC (0001), (11200), (11000) metal-oxide-semiconductor structures characterized by low-temperature subthreshold slopes. <i>Applied Physics Letters</i> , 2016 , 108, 152108	3.4	24	
324	Interface carbon defects at 4H-SiC(0001)/SiO2 interfaces studied by electron-spin-resonance spectroscopy. <i>Applied Physics Letters</i> , 2018 , 113, 061605	3.4	23	
323	Enhancement of carrier lifetime in lightly Al-doped p-type 4H-SiC epitaxial layers by combination of thermal oxidation and hydrogen annealing. <i>Applied Physics Express</i> , 2014 , 7, 085501	2.4	23	
322	Impacts of reduction of deep levels and surface passivation on carrier lifetimes in p-type 4H-SiC epilayers. <i>Journal of Applied Physics</i> , 2011 , 109, 114502	2.5	23	
321	High-Temperature Deep Level Transient Spectroscopy on As-Grown P-Type 4H-SiC Epilayers. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, L285-L287	1.4	23	
320	m-plane GaN layers grown by rf-plasma assisted molecular beam epitaxy with varying GaN flux ratios on m-plane 4H-SiC substrates. <i>Journal of Applied Physics</i> , 2007 , 101, 033534	2.5	23	
319	Conductivity Control of SiC by In-Situ Doping and Ion Implantation. <i>Materials Science Forum</i> , 1998 , 264-268, 675-680	0.4	23	
318	Impact ionization coefficients and critical electric field in GaN. Journal of Applied Physics, 2021, 129, 185	57 <u>2</u> 032	23	
317	Parallel-Plane Breakdown Fields of 2.8-3.5 MV/cm in GaN-on-GaN p-n Junction Diodes with Double-Side-Depleted Shallow Bevel Termination 2018 ,		23	
316	Correlation between shapes of Shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers. <i>Philosophical Magazine</i> , 2017 , 97, 2736-2752	1.6	22	
315	Impact of surface step heights of 6HBiC (0 0 0 1) vicinal substrates in heteroepitaxial growth of 2HAlN. <i>Applied Surface Science</i> , 2008 , 254, 7858-7860	6.7	22	
314	SiC JFET dc characteristics under extremely high ambient temperatures. <i>IEICE Electronics Express</i> , 2004 , 1, 523-527	0.5	22	

313	Identification of dislocations in 4H-SiC epitaxial layers and substrates using photoluminescence imaging. <i>Japanese Journal of Applied Physics</i> , 2014 , 53, 020304	1.4	21
312	Enhancement of Carrier Lifetimes in n-Type 4H-SiC Epitaxial Layers by Improved Surface Passivation. <i>Applied Physics Express</i> , 2010 , 3, 121201	2.4	21
311	Improvement of Channel Mobility in Inversion-Type n-Channel GaN Metal Dxide Bemiconductor Field-Effect Transistor by High-Temperature Annealing. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 7784-7787	1.4	21
310	Surface Morphological Structures of 4H-, 6H- and 15R-SiC (0001) Epitaxial Layers Grown by Chemical Vapor Deposition. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 3315-3319	1.4	21
309	Interface properties in metal-oxide-semiconductor structures on n-type 4H-SiC(033 8). <i>Applied Physics Letters</i> , 2002 , 81, 4772-4774	3.4	21
308	High-Temperature Operation of n- and p-Channel JFETs Fabricated by Ion Implantation Into a High-Purity Semi-Insulating SiC Substrate. <i>IEEE Electron Device Letters</i> , 2018 , 39, 723-726	4.4	20
307	Lattice mismatch and crystallographic tilt induced by high-dose ion-implantation into 4H-SiC. <i>Journal of Applied Physics</i> , 2012 , 111, 103715	2.5	20
306	Correspondence between Surface Morphological Faults and Crystallographic Defects in 4HBiC Homoepitaxial Film. <i>Japanese Journal of Applied Physics</i> , 2002 , 41, 6320-6326	1.4	20
305	Photoluminescence of Homoepitaxial 3C-SiC on Sublimation-Grown 3C-SiC Substrates. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, L1110-L1113	1.4	20
304	Ion implantation technology in SiC for power device applications 2014,		19
304	Ion implantation technology in SiC for power device applications 2014 , Temperature Dependence of Impact Ionization Coefficients in 4H-SiC. <i>Materials Science Forum</i> , 2014 , 778-780, 461-466	0.4	19
	Temperature Dependence of Impact Ionization Coefficients in 4H-SiC. Materials Science Forum,	0.4	
303	Temperature Dependence of Impact Ionization Coefficients in 4H-SiC. <i>Materials Science Forum</i> , 2014 , 778-780, 461-466 Performance and reliability improvement in SiC power MOSFETs by implementing AlON high-k gate	o.4 3.9	19
303	Temperature Dependence of Impact Ionization Coefficients in 4H-SiC. <i>Materials Science Forum</i> , 2014 , 778-780, 461-466 Performance and reliability improvement in SiC power MOSFETs by implementing AlON high-k gate dielectrics 2012 , Epitaxial Growth of Cubic SiC Films on Si Substrates by High Vacuum Chemical Vapor Deposition	ŕ	19
303 302 301	Temperature Dependence of Impact Ionization Coefficients in 4H-SiC. <i>Materials Science Forum</i> , 2014 , 778-780, 461-466 Performance and reliability improvement in SiC power MOSFETs by implementing AlON high-k gate dielectrics 2012 , Epitaxial Growth of Cubic SiC Films on Si Substrates by High Vacuum Chemical Vapor Deposition Using 1,3-Disilabutane. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 1474-1476 Evaluation of High Frequency Switching Capability of SiC Schottky Barrier Diode, Based on Junction	3.9	19 19
303 302 301 300	Temperature Dependence of Impact Ionization Coefficients in 4H-SiC. <i>Materials Science Forum</i> , 2014 , 778-780, 461-466 Performance and reliability improvement in SiC power MOSFETs by implementing AlON high-k gate dielectrics 2012 , Epitaxial Growth of Cubic SiC Films on Si Substrates by High Vacuum Chemical Vapor Deposition Using 1,3-Disilabutane. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 1474-1476 Evaluation of High Frequency Switching Capability of SiC Schottky Barrier Diode, Based on Junction Capacitance Model. <i>IEEE Transactions on Power Electronics</i> , 2008 , 23, 2602-2611 Homoepitaxial growth of 4HBiC and nitrogen doping by chemical vapor deposition. <i>Journal of</i>	3.9	19 19 19
303 302 301 300	Temperature Dependence of Impact Ionization Coefficients in 4H-SiC. <i>Materials Science Forum</i> , 2014 , 778-780, 461-466 Performance and reliability improvement in SiC power MOSFETs by implementing AlON high-k gate dielectrics 2012 , Epitaxial Growth of Cubic SiC Films on Si Substrates by High Vacuum Chemical Vapor Deposition Using 1,3-Disilabutane. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 1474-1476 Evaluation of High Frequency Switching Capability of SiC Schottky Barrier Diode, Based on Junction Capacitance Model. <i>IEEE Transactions on Power Electronics</i> , 2008 , 23, 2602-2611 Homoepitaxial growth of 4HBiC and nitrogen doping by chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2003 , 249, 208-215 Switching characteristics of SiC JFET and Schottky diode in high-temperature dc-dc power	3.9 7.2 1.6	19 19 19 19

(2011-2013)

295	Resolving the EH6/7 level in 4H-SiC by Laplace-transform deep level transient spectroscopy. <i>Applied Physics Letters</i> , 2013 , 102, 152108	3.4	18
294	Nonradiative recombination at threading dislocations in 4H-SiC epilayers studied by micro-photoluminescence mapping. <i>Journal of Applied Physics</i> , 2011 , 110, 033525	2.5	18
293	Capacitance spectroscopy study of deep levels in Cl-implanted 4H-SiC. <i>Journal of Applied Physics</i> , 2012 , 112, 063717	2.5	18
292	Design and fabrication of RESURF MOSFETs on 4H-SiC(0001), (112~0), and 6H-SiC(0001). <i>IEEE Transactions on Electron Devices</i> , 2005 , 52, 112-117	2.9	18
291	Specular Surface Morphology of 4H-SiC Epilayers Grown on (\$textbf{11}bar{textbf{2}}textbf{0}\$) Face. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, L1375-L1378	1.4	18
290	Updated trade-off relationship between specific on-resistance and breakdown voltage in 4H-SiC{0001} unipolar devices. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, 018002	1.4	18
289	Ultrahigh-voltage SiC devices for future power infrastructure 2013,		17
288	The structural and electronic properties of chiral SiC nanotubes: a hybrid density functional study. <i>Nanotechnology</i> , 2009 , 20, 285703	3.4	17
287	Hot-implantation of nitrogen donors into p-type \text{\text{EiC}} and characterization of n+-p junction. Journal of Electronic Materials, 1997 , 26, 165-171	1.9	17
286	. IEEE Transactions on Electron Devices, 2008 , 55, 2054-2060	2.9	17
285	Chemical vapor deposition and deep level analyses of 4H-SiC(112 0). <i>Journal of Applied Physics</i> , 2001 , 89, 6105-6109	2.5	17
284	Nitrogen Donor Concentrations and Its Energy Levels in 4H-SiC Uniquely Determined by a New Graphical Method Based on Hall-Effect Measurement. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 40	1 3:4 01	6 ¹⁷
283	Nitrogen Ion Implantation into 6H-SiC and Application to High-Temperature, Radiation-Hard Diodes. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 3036-3042	1.4	17
282	Efficient power Schottky rectifiers of 4H-SiC		17
281	Design and formation of SiC (0001)/SiO2 interfaces via Si deposition followed by low-temperature oxidation and high-temperature nitridation. <i>Applied Physics Express</i> , 2020 , 13, 091003	2.4	17
280	Accurate method for estimating hole trap concentration in n-type GaN via minority carrier transient spectroscopy. <i>Applied Physics Express</i> , 2018 , 11, 071002	2.4	16
279	Structural analysis of double-layer Shockley stacking faults formed in heavily-nitrogen-doped 4H-SiC during annealing. <i>Journal of Applied Physics</i> , 2017 , 122, 045707	2.5	16
278	Structural and electronic characterization of (2,33) bar-shaped stacking fault in 4H-SiC epitaxial layers. <i>Applied Physics Letters</i> , 2011 , 98, 051915	3.4	16

Characterization of silicon dioxide films on 4H-SiC Si (0001) face by cathodoluminescence spectroscopy and x-ray photoelectron spectroscopy. <i>Applied Physics Letters</i> , 2012 , 100, 082105	3.4	16	
Deep level transient spectroscopy study of defects in hydrogen implanted p-type 4H-SiC. <i>Journal of Applied Physics</i> , 2007 , 101, 103716	2.5	16	
Effect of the Schottky barrier height on the detection of midgap levels in 4H-SiC by deep level transient spectroscopy. <i>Journal of Applied Physics</i> , 2007 , 102, 113702	2.5	16	
Schottky Barriers for Pt, Mo and Ti on 6H and 4H SiC (0001), (000-1), (1-100) and (1-210) Faces Measured by I-V, C-V and Internal Photoemission. <i>Materials Science Forum</i> , 2003 , 433-436, 705-708	0.4	16	
Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation. <i>Applied Physics Express</i> , 2021 , 14, 031001	2.4	16	
Reduction of interface state density in SiC (0001) MOS structures by post-oxidation Ar annealing at high temperature. <i>AIP Advances</i> , 2017 , 7, 045008	1.5	15	
Normally-off 400 LC Operation of n- and p-JFETs With a Side-Gate Structure Fabricated by Ion Implantation Into a High-Purity Semi-Insulating SiC Substrate. <i>IEEE Electron Device Letters</i> , 2019 , 40, 86	6 -88 9	15	
Estimation of Threshold Voltage in SiC Short-Channel MOSFETs. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 3077-3080	2.9	15	
Improvement of Carrier Lifetimes in Highly Al-Doped p-Type 4H-SiC Epitaxial Layers by Hydrogen Passivation. <i>Applied Physics Express</i> , 2013 , 6, 121301	2.4	15	
Deep Interface States in SiO 2/p-type BiC Structure. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L143	30±14143	32 15	
Impact Ionization Coefficients in GaN Measured by Above- and Sub-Eg Illuminations for pln+ Junction 2019 ,		15	
Measurement of avalanche multiplication utilizing Franz-Keldysh effect in GaN p-n junction diodes with double-side-depleted shallow bevel termination. <i>Applied Physics Letters</i> , 2019 , 115, 142101	3.4	14	
Single-crystalline 4H-SiC micro cantilevers with a high quality factor. <i>Sensors and Actuators A: Physical</i> , 2013 , 197, 122-125	3.9	14	
Quantum-confinement effect on holes in silicon nanowires: Relationship between wave function and band structure. <i>Journal of Applied Physics</i> , 2011 , 109, 064318	2.5	14	
Enhancement of initial layer-by-layer growth and reduction of threading dislocation density by optimized Ga pre-irradiation in molecular-beam epitaxy of 2H-AlN on 6H-SiC(0001). <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, 2094-2096		14	
Deep levels in 6H-SiC wafers and step-controlled epitaxial layers. <i>Applied Physics Letters</i> , 1994 , 65, 581-	·5 <u>8.3</u>	14	
Impact ionization coefficients of 4H-SiC in a wide temperature range. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, 018001	1.4	14	
Temperature dependence of conductance in NiO-based resistive switching memory showing two modes in the forming process. <i>Applied Physics Letters</i> , 2015 , 107, 233510	3.4	13	
	Spectroscopy and x-ray photoelectron spectroscopy. <i>Applied Physics Letters</i> , 2012, 100, 082105 Deep level transient spectroscopy study of defects in hydrogen implanted p-type 4H-SiC. <i>Journal of Applied Physics</i> , 2007, 101, 103716 Effect of the Schottky barrier height on the detection of midgap levels in 4H-SiC by deep level transient spectroscopy. <i>Journal of Applied Physics</i> , 2007, 102, 113702 Schottky Barriers for Pt, Mo and Ti on 6H and 4H SiC (0001), (000-1), (11-100) and (1-210) Faces Measured by I-V, C-V and Internal Photoemission. <i>Materials Science Forum</i> , 2003, 433-436, 705-708 Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation. <i>Applied Physics Express</i> , 2021, 14, 031001 Reduction of interface state density in SiC (0001) MOS structures by post-oxidation Ar annealing at high temperature. <i>AIP Advances</i> , 2017, 7, 045008 Normally-off 400 ft Operation of n- and p-JFETs With a Side-Gate Structure Fabricated by Ion Implantation Into a High-Purity Semi-Insulating SiC Substrate. <i>IEEE Transactions on Electron Devices</i> , 2018, 65, 3077-3080 Improvement of Carrier Lifetimes in Highly Al-Doped p-Type 4H-SiC Epitaxial Layers by Hydrogen Passivation. <i>Applied Physics Express</i> , 2013, 6, 121301 Deep Interface States in SiO 2/p-type EiC Structure. <i>Japanese Journal of Applied Physics</i> , 1997, 36, L143 Impact Ionization Coefficients in GaN Measured by Above- and Sub-Eg Illuminations for p/h-Junction 2019. Measurement of avalanche multiplication utilizing Franz-Keldysh effect in GaN p-n junction diodes with double-side-depleted shallow bevel termination. <i>Applied Physics Letters</i> , 2019, 115, 142101 Single-crystalline 4H-SiC micro cantilevers with a high quality factor. <i>Sensors and Actuators A: Physical</i> , 2013, 197, 122-125 Quantum-confinement effect on holes in silicon nanowires: Relationship between wave Function and band structure. <i>Journal of Applied Physics</i> , 2011, 109, 064318 Enhancement of initial layer-by-layer growth and	Spectroscopy and x-ray photoelectron spectroscopy. Applied Physics Letters, 2012, 100, 082105 Deep level transient spectroscopy study of defects in hydrogen implanted p-type 4H-SiC. Journal of Applied Physics, 2007, 101, 103716 Effect of the Schoetky barrier height on the detection of midgap levels in 4H-SiC by deep level transient spectroscopy. Journal of Applied Physics, 2007, 102, 113702 Schottky Barriers for Pt, Mo and Ti on 6H and 4H SiC (0001), (1000-1), (1-100) and (1-210) Faces Measured by I-V, C-V and Internal Photoemission. Materials Science Forum, 2003, 433-436, 705-708 Mobility improvement of 4H-SiC (0001) MOSFETS by a three-step process of H2 etching, SiO2 deposition, and interface state density in SiC (0001) MOS structures by post-oxidation Ar annealing at high temperature. AIP Advances, 2017, 7, 045008 Normally-off 400 °C Operation of n- and p-JFETS With a Side-Gate Structure Fabricated by Ion Implantation Into a High-Purity Semi-Insulating SiC Substrate. IEEE Electron Device Letters, 2019, 40, 866-869 Estimation of Threshold Voltage in SiC Short-Channel MOSFETS. IEEE Transactions on Electron Devices, 2018, 65, 3077-3080 Improvement of Carrier Lifetimes in Highly Al-Doped p-Type 4H-SiC Epitaxial Layers by Hydrogen Passivation. Applied Physics Express, 2013, 6, 121301 Deep Interface States in SiO 2/p-type ESiC Structure. Japanese Journal of Applied Physics, 1997, 36, L1430-Lp43. Impact Ionization Coefficients in GaN Measured by Above- and Sub-Eg Illuminations for pin-Junction diodes with double-side-depleted shallow bevel termination. Applied Physics Letters, 2019, 115, 142101 Single-crystalline 4H-SiC micro cantilevers with a high quality factor. Sensors and Actuators A: Physical, 2013, 197, 122-125 Quantum-confinement effect on holes in silicon nanowires: Relationship between wave function and band structure. Journal of Applied Physics, 2011, 109, 064318 Enhancement of initial layer-by-layer growth and reduction of threading dislocation density by optimized Ga pre-irradiation in mole	Spectroscopy and x-ray photoelectron spectroscopy. Applied Physics Letters, 2012, 100, 082105 34 10 Deep level transient spectroscopy study of defects in hydrogen implanted p-type 4H-SiC. Journal of Applied Physics, 2007, 101, 103716 Effect of the Schottky barrier height on the detection of midgap levels in 4H-SiC by deep level transient spectroscopy. Journal of Applied Physics, 2007, 102, 113702 2-5 16 Schottky Barriers for Pt. Mo and Ti on 6H and 4H SiC (0001), (000-1), (1-100) and (1-210) Faces Measured by I-V, C-V and Internal Photoemission. Materials Science Forum, 2003, 433-436, 705-708 04 10 Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation. Applied Physics Express, 2021, 14, 031001 2-4 16 Reduction of interface state density in SiC (0001) MOS structures by post-oxidation Ar annealing at high temperature. AIP Advances, 2017, 7, 045008 1-5 Normally-off 400 ItC Operation of n- and p-JFETS with a Side-Gate Structure Fabricated by Ion Implantation Into a High-Purity Semi-Insulating SiC Substrate. IEEE Electron Device Letters, 2019, 40, 866-889 1-5 Estimation of Threshold Voltage in SiC Short-Channel MOSFETs. IEEE Transactions on Electron Devices, 2018, 63, 3077-3080 2-9 15 Improvement of Carrier Lifetimes in Highly Al-Doped p-Type 4H-SiC Epitaxial Layers by Hydrogen Passivation. Applied Physics Express, 2013, 6, 121301 2-9 Deep Interface States in SiO 2/p-type EliC Structure. Japanese Journal of Applied Physics, 1997, 36, L1430-L0432-3 Impact Ionization Coefficients in GaN Measured by Above- and Sub-Eg Illuminations for pfh+ Junction 2019, Measurement of avalanche multiplication utilizing Franz-Keldysh effect in GaN p-n junction diodes with double-side depleted shallow bevel termination. Applied Physics Letters, 2019, 115, 142101 3-4 Single-crystalline 4H-SiC micro cantilevers with a high quality factor. Sensors and Actuators A: Physical, 2013, 197, 122-125 Quantum-confinement effect on holes in silicon nanowires: Rel

259	Detection of minority carrier traps in p-type 4H-SiC. Applied Physics Letters, 2014, 104, 092105	3.4	13	
258	Exciton-Related Photoluminescence in 4H-SiC Grown by Step-Controlled Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1996 , 35, 4373-4378	1.4	13	
257	Fast Epitaxial Growth of 4H-SiC by Chimney-Type Vertical Hot-Wall Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2001 , 40, L374-L376	1.4	13	
256	Step-Controlled Epitaxial Growth of 4H-SiC and Doping of Ga as a Blue Luminescent Center. Japanese Journal of Applied Physics, 1993 , 32, 1045-1050	1.4	13	
255	Franz-Keldysh effect in GaN p-n junction diode under high reverse bias voltage. <i>Applied Physics Letters</i> , 2018 , 112, 252104	3.4	13	
254	Observation of double Shockley stacking fault expansion in heavily-nitrogen-doped 4H-SiC using PL technique. <i>Journal of Crystal Growth</i> , 2017 , 468, 889-893	1.6	12	
253	Reduction of interface state density in SiC (0001) MOS structures by low-oxygen-partial-pressure annealing. <i>Applied Physics Express</i> , 2019 , 12, 031001	2.4	12	
252	ShockleyReadHall lifetime in homoepitaxial p-GaN extracted from recombination current in GaN pE+ junction diodes. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SCCB14	1.4	12	
251	TaC-coated graphite prepared via a wet ceramic process: Application to CVD susceptors for epitaxial growth of wide-bandgap semiconductors. <i>Journal of Crystal Growth</i> , 2017 , 478, 163-173	1.6	12	
250	Appearance of quantum point contact in Pt/NiO/Pt resistive switching cells. <i>Journal of Materials Research</i> , 2017 , 32, 2631-2637	2.5	12	
249	Correlation between Oxygen Composition and Electrical Properties in NiO Thin Films for Resistive Random Access Memory. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 015802	1.4	12	
248	Sources of Epitaxial Growth-Induced Stacking Faults in 4H-SiC. <i>Journal of Electronic Materials</i> , 2010 , 39, 1166-1169	1.9	12	
247	Evaluation of capacitance-voltage characteristics for high voltage SiC-JFET. <i>IEICE Electronics Express</i> , 2007 , 4, 517-523	0.5	12	
246	High-Voltage 4HBiC Schottky Barrier Diodes Fabricated on (03bar38) with Closed Micropipes. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, L13-L16	1.4	12	
245	Homoepitaxial Chemical Vapor Deposition of 6H-SiC at Low Temperatures on {01bar14} Substrates. Japanese Journal of Applied Physics, 1992 , 31, 3655-3661	1.4	12	
244	Thermo-Optic Coefficients of 4H-SiC, GaN, and AlN for Ultraviolet to Infrared Regions up to 500 LC. Japanese Journal of Applied Physics, 2012 , 51, 112101	1.4	12	
243	Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method. <i>Applied Spectroscopy</i> , 2016 , 70, 1209-13	3.1	11	
242	Characterization of silicon dioxide films on 4H-SiC (0001) Si, (1-100) M, and (11-20) A faces by cathodoluminescence spectroscopy. <i>Applied Physics Letters</i> , 2013 , 102, 051612	3.4	11	

241	E1/E2 traps in 6H-SiC studied with Laplace deep level transient spectroscopy. <i>Applied Physics Letters</i> , 2013 , 102, 032104	3.4	11
240	Demonstration of 3 kV 4H-SiC reverse blocking MOSFET 2016 ,		11
239	Observation of carrier recombination in single Shockley stacking faults and at partial dislocations in 4H-SiC. <i>Journal of Applied Physics</i> , 2018 , 124, 095702	2.5	11
238	Estimation of the critical condition for expansion/contraction of single Shockley stacking faults in 4H-SiC PiN diodes. <i>Applied Physics Letters</i> , 2020 , 116, 092105	3.4	10
237	. IEEE Electron Device Letters, 2014 , 35, 339-341	4.4	10
236	Physics of SiC MOS interface and development of trench MOSFETs 2013,		10
235	Abnormal behavior of longitudinal optical phonon in silicon dioxide films on 4H-SiC bulk epitaxial substrate using Fourier transform infrared (FT-IR) spectroscopy. <i>Applied Spectroscopy</i> , 2013 , 67, 542-5	3.1	10
234	Embedded epitaxial growth of 4H-SiC on trenched substrates and pn junction characteristics. <i>Microelectronic Engineering</i> , 2006 , 83, 27-29	2.5	10
233	Homoepitaxy of 4H-SiC on Trenched (0001) Si Face Substrates by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2004 , 43, 4105-4109	1.4	10
232	Interface structures of epitaxial EiC on EiC substrates. <i>Journal of Crystal Growth</i> , 1994 , 137, 175-180	1.6	10
231	Photoluminescence of Ti Doped 6H-SiC Grown by Vapor Phase Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1991 , 30, L289-L291	1.4	10
230	Formation of high-quality SiC(0001)/SiO2 structures by excluding oxidation process with H2 etching before SiO2 deposition and high-temperature N2 annealing. <i>Applied Physics Express</i> , 2020 , 13, 121002	2.4	10
229	Interface properties of NO-annealed 4H-SiC (0001), ($11\ 2\ 0$), and ($1\ 1\ 0$ 0) MOS structures with heavily doped p-bodies. <i>Journal of Applied Physics</i> , 2017 , 121, 145703	2.5	9
228	Dominant conduction mechanism in NiO-based resistive memories. <i>Journal of Applied Physics</i> , 2015 , 117, 225701	2.5	9
227	Forward thermionic field emission transport and significant image force lowering caused by high electric field at metal/heavily-doped SiC Schottky interfaces. <i>Applied Physics Express</i> , 2020 , 13, 041001	2.4	9
226	Electron-spin-resonance and electrically detected-magnetic-resonance characterization on PbC center in various 4H-SiC(0001)/SiO2 interfaces. <i>Journal of Applied Physics</i> , 2020 , 127, 145301	2.5	9
225	Theoretical analysis of Hall factor and hole mobility in p-type 4H-SiC considering anisotropic valence band structure. <i>Journal of Applied Physics</i> , 2018 , 123, 245704	2.5	9
224	Phonon-Limited Electron Mobility in Rectangular Cross-Sectional Ge Nanowires. <i>IEEE Transactions on Electron Devices</i> , 2014 , 61, 1993-1998	2.9	9

(2015-2013)

223	Orientation and Shape Effects on Ballistic Transport Properties in Gate-All-Around Rectangular Germanium Nanowire nFETs. <i>IEEE Transactions on Electron Devices</i> , 2013 , 60, 944-950	2.9	9	
222	High-Temperature Characteristics of 3-kV 4H-SiC Reverse Blocking MOSFET for High-Performance Bidirectional Switch. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 4167-4174	2.9	9	
221	Progress in ultrahigh-voltage SiC devices for future power infrastructure 2014,		9	
220	Breakdown characteristics of 12½0 kV-class 4H-SiC PiN diodes with improved junction termination structures 2012 ,		9	
219	Characterization of silicon dioxide films on a 4H-SiC Si(0001) face by fourier transform infrared (FT-IR) spectroscopy and cathodoluminescence spectroscopy. <i>Applied Spectroscopy</i> , 2011 , 65, 543-8	3.1	9	
218	Mobility oscillation by one-dimensional quantum confinement in Si-nanowire metal-oxide-semiconductor field effect transistors. <i>Journal of Applied Physics</i> , 2009 , 106, 034312	2.5	9	
217	4H-SiC bipolar junction transistors with record current gains of 257 on (0001) and 335 on (0001) 2011 ,		9	
216	Direct determination of Burgers vector sense and magnitude of elementary dislocations by synchrotron white x-ray topography. <i>Journal of Applied Physics</i> , 2008 , 103, 013510	2.5	9	
215	Improved Performance of 4H-SiC Double Reduced Surface Field Metal Dxide Bemiconductor Field-Effect Transistors by Increasing RESURF Doses. <i>Applied Physics Express</i> , 2008 , 1, 101403	2.4	9	
214	Characterization of SiC diodes in extremely high temperature ambient		9	
213	Molecular-beam epitaxy of AlN on off-oriented SiC and demonstration of MISFET using AlN/SiC interface. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 2643-2646		9	
212	Scanning Capacitance and Spreading Resistance Microscopy of SiC Multiple-pn-Junction Structure. <i>Japanese Journal of Applied Physics</i> , 2002 , 41, L40-L42	1.4	9	
211	Experimental Determination of Impact Ionization Coefficients Along <1120> in 4H-SiC. <i>IEEE Transactions on Electron Devices</i> , 2020 , 67, 3740-3744	2.9	9	
210	Effect of NiO crystallinity on forming characteristics in Pt/NiO/Pt cells as resistive switching memories. <i>Journal of Applied Physics</i> , 2016 , 120, 115308	2.5	9	
209	Control of carbon vacancy in SiC toward ultrahigh-voltage power devices. <i>Superlattices and Microstructures</i> , 2016 , 99, 151-157	2.8	9	
208	Conductance fluctuation in NiO-based resistive switching memory. <i>Journal of Applied Physics</i> , 2018 , 124, 152134	2.5	9	
207	Suppression of Punch-Through Current in 3 kV 4H-SiC Reverse-Blocking MOSFET by Using Highly Doped Drift Layer. <i>IEEE Journal of the Electron Devices Society</i> , 2018 , 6, 449-453	2.3	8	
206	Characterization of traps in SiC/SiO2interfaces close to the conduction band by deep-level	1.4	8	

205	Temperature dependence of optical absorption coefficient of 4H- and 6H-SiC from room temperature to 300 LC. <i>Japanese Journal of Applied Physics</i> , 2014 , 53, 108003	1.4	8
204	Enhanced Drain Current of 4H-SiC MOSFETs by Adopting a Three-Dimensional Gate Structure. <i>IEEE Transactions on Electron Devices</i> , 2009 , 56, 2632-2637	2.9	8
203	Impact of III/V ratio on polytype and crystalline quality of AlN grown on 4H-SiC (11\$ bar 2 \$0) substrate by molecular-beam epitaxy. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2006 , 3, 1503-1506		8
202	Avalanche phenomena in 4H-SiC p-n diodes fabricated by aluminum or boron implantation. <i>IEEE Transactions on Electron Devices</i> , 2002 , 49, 1505-1510	2.9	8
201	Fabrication of SiC lateral super junction diodes with multiple stacking p- and n-layers. <i>IEEE Electron Device Letters</i> , 2003 , 24, 321-323	4.4	8
200	Deep-ultraviolet micro-Raman investigation of surface defects in a 4HBiC homoepitaxially grown film. <i>Applied Physics Letters</i> , 2005 , 87, 241906	3.4	8
199	Tunneling Current in 4H-SiC p-n Junction Diodes. IEEE Transactions on Electron Devices, 2020, 67, 3329-	3 3 33/J	7
198	Reliability-aware design of metal/high-k gate stack for high-performance SiC power MOSFET 2017 ,		7
197	Phonon-assisted optical absorption due to FranzKeldysh effect in 4H-SiC pl junction diode under high reverse bias voltage. <i>Applied Physics Express</i> , 2018 , 11, 091302	2.4	7
196	Calibration on wide-ranging aluminum doping concentrations by photoluminescence in high-quality uncompensated p-type 4H-SiC. <i>Applied Physics Letters</i> , 2017 , 111, 072101	3.4	7
195	Progress and future challenges of SiC power devices and process technology 2017,		7
194	Oxidation-induced majority and minority carrier traps in n- and p-type 4H-SiC. <i>Applied Physics Express</i> , 2015 , 8, 111301	2.4	7
193	Demonstration of CommonEmitter Operation in AlGaN/SiC Heterojunction Bipolar Transistors. <i>IEEE Electron Device Letters</i> , 2010 , 31, 942-944	4.4	7
192	Characterization of ZrB2(0 0 0 1) surface prepared by ex situ HF solution treatment toward applications as a substrate for GaN growth. <i>Surface Science</i> , 2006 , 600, 1439-1449	1.8	7
191	Homoepitaxy of 6H-SiC on nearly on-axis (0001) faces by chemical vapor deposition Part II: Evolution of surface steps. <i>Journal of Crystal Growth</i> , 2003 , 256, 347-351	1.6	7
190	Fast epitaxial growth of high-purity 4H-SiC((000bar 1)) in a vertical hot-wall chemical vapor deposition) in a vertical hot-wall chemical vapor deposition. <i>Journal of Electronic Materials</i> , 2005 , 34, 324-329	1.9	7
189	Direct growth of GaN on off-oriented SiC (0001) by molecular-beam epitaxy for GaN/SiC heterojunction bipolar transistor. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 2208-2211		7
188	Step-controlled epitaxy of SiC: High-quality homoepitaxial growth. <i>Diamond and Related Materials</i> , 1998 , 7, 342-347	3.5	7

187	Ion implantation technology in SiC for high-voltage/high-temperature devices 2016,		7
186	Design Criterion for SiC BJTs to Avoid ON-Characteristics Degradation Due to Base Spreading Resistance. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 2086-2091	2.9	6
185	Unique resistive switching phenomena exhibiting both filament-type and interface-type switching in Ti/Pr0.7Ca0.3MnO3/IPt ReRAM cells. <i>Applied Physics Letters</i> , 2020 , 116, 013501	3.4	6
184	Deep-ultraviolet light emission from 4H-AlN/4H-GaN short-period superlattice grown on 4H-SiC(112[D). <i>Applied Physics Letters</i> , 2018 , 112, 012106	3.4	6
183	Passivation of Surface Recombination at the Si-Face of 4H-SiC by Acidic Solutions. <i>ECS Journal of Solid State Science and Technology</i> , 2018 , 7, Q127-Q130	2	6
182	Glide velocities of Si-core partial dislocations for double-Shockley stacking fault expansion in heavily nitrogen-doped SiC during high-temperature annealing. <i>Journal of Applied Physics</i> , 2018 , 124, 025705	2.5	6
181	Structural stability and electronic properties of SiC nanocones: First-principles calculations and symmetry considerations. <i>Applied Physics Letters</i> , 2011 , 98, 123102	3.4	6
180	Electronic properties of finite-length silicon carbide nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 407-410	1.3	6
179	Bandgap shift by quantum confinement effect in <100> Si-nanowires derived from threshold-voltage shift of fabricated metal-oxide-semiconductor field effect transistors and theoretical calculations. <i>Journal of Applied Physics</i> , 2011 , 109, 064312	2.5	6
178	Theoretical study of Cl-related defect complexes in cubic SiC. Journal of Applied Physics, 2012, 111, 103	37 <u>05</u>	6
177	Effects of Channel Mobility on SiC Power Metal-Oxide-Semiconductor Field Effect Transistor Performance. <i>Japanese Journal of Applied Physics</i> , 1996 , 35, 3331-3333	1.4	6
176	Surface polarity dependence in step-controlled epitaxy: progress in SiC epitaxy. <i>Diamond and Related Materials</i> , 1997 , 6, 1276-1281	3.5	6
175	N2O-grown oxides/4H-SiC (0001), (033B), and (112D) interface properties characterized by using p-type gate-controlled diodes. <i>Applied Physics Letters</i> , 2008 , 93, 193510	3.4	6
174	Electron-emission properties of silicon field-emitter arrays in gaseous ambient for charge-compensation device. <i>Journal of Vacuum Science & Technology B</i> , 2008 , 26, 782		6
173	Surface Morphologies of 4H-SiC(11bar20) and (1bar100) Treated by High-Temperature Gas Etching. Japanese Journal of Applied Physics, 2008 , 47, 8388-8390	1.4	6
172	High-temperature characteristics of SiC Schottky barrier diodes related to physical phenomena. <i>IEICE Electronics Express</i> , 2008 , 5, 198-203	0.5	6
171	Abnormal Out-Diffusion of Epitaxially Doped Boron in 4HBiC Caused by Implantation and Annealing. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 5053-5056	1.4	6
170	High-voltage 4H-SiC pn diodes fabricated by p-type ion implantation. <i>Electronics and Communications in Japan</i> , 2003 , 86, 44-51		6

169	Homoepitaxial mesa structures on 4HBiC (0001) and substrates by chemical vapor deposition. Journal of Crystal Growth, 2003 , 254, 115-122	1.6	6
168	Mechanism of stabilization of zincblende GaN on hexagonal substrates: Insight gained from growth on ZrB2 (0001). <i>Journal of Crystal Growth</i> , 2005 , 284, 369-378	1.6	6
167	Nearly Fermi-level-pinning-free interface in metal/heavily-doped SiC Schottky structures. <i>Japanese Journal of Applied Physics</i> , 2021 , 60, SBBD14	1.4	6
166	Demonstration of Conductivity Modulation in SiC Bipolar Junction Transistors With Reduced Base Spreading Resistance. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 4870-4874	2.9	5
165	Suppression of the Forward Degradation in 4H-SiC PiN Diodes by Employing a Recombination-Enhanced Buffer Layer. <i>Materials Science Forum</i> , 2017 , 897, 419-422	0.4	5
164	Characterization of Thermal Oxides on 4H-SiC Epitaxial Substrates Using Fourier-Transform Infrared Spectroscopy. <i>Applied Spectroscopy</i> , 2017 , 71, 911-918	3.1	5
163	Application of UV photoluminescence imaging spectroscopy for stacking faults identification on thick, lightly n-type doped, 4th-SiC epilayers. <i>AIP Advances</i> , 2015 , 5, 037121	1.5	5
162	Geometrical and band-structure effects on phonon-limited hole mobility in rectangular cross-sectional germanium nanowires. <i>Journal of Applied Physics</i> , 2014 , 116, 235701	2.5	5
161	High-temperature annealing behavior of deep levels in 1MeV electron irradiated p-type 6H-SiC. <i>Applied Physics Letters</i> , 2008 , 93, 032108	3.4	5
160	Epitaxial growth of 4HBiC{0001} and reduction of deep levels. <i>Superlattices and Microstructures</i> , 2006 , 40, 225-232	2.8	5
159	Role of initial nucleation in molecular-beam epitaxy of GaN on lattice-matched ZrB2 substrates. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 2191-2194		5
158	Power Conversion with SiC Devices at Extremely High Ambient Temperatures		5
157	Bulk crystal growth of 6H-SiC on polytype-controlled substrates through vapor phase and characterization. <i>Journal of Crystal Growth</i> , 1991 , 115, 733-739	1.6	5
156	Effect of quantum confinement on the defect-induced localized levels in 4H-SiC(0001)/SiO2 systems. <i>Journal of Applied Physics</i> , 2020 , 128, 095702	2.5	5
155	Short-Channel Effects in SiC MOSFETs Based on Analyses of Saturation Drain Current. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 1382-1384	2.9	5
154	Improvement of Both n- and p-Channel Mobilities in 4H-SiC MOSFETs by High-Temperature N□ Annealing. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 638-644	2.9	5
153	Effects of TiO2 crystallinity and oxygen composition on forming characteristics in Pt/TiO2/Pt resistive switching cells. <i>AIP Advances</i> , 2018 , 8, 125010	1.5	5
152	Effect of Postoxidation Nitridation on Forward Current Voltage Characteristics in 4HBiC Mesa p-n Diodes Passivated With SiO2. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 3016-3018	2.9	4

151	Decay curve analyses in carrier lifetime measurements of p- and n-type 4H-SiC epilayers. <i>Japanese Journal of Applied Physics</i> , 2014 , 53, 111301	1.4	4	
150	Characterization of inhomogeneity in silicon dioxide films on 4H-silicon carbide epitaxial substrate using a combination of Fourier transform infrared and cathodoluminescence spectroscopy. <i>Applied Spectroscopy</i> , 2014 , 68, 1176-80	3.1	4	
149	Carrier Lifetimes in Lightly-Doped p-Type 4H-SiC Epitaxial Layers Enhanced by Post-growth Processes and Surface Passivation. <i>Journal of Electronic Materials</i> , 2017 , 46, 6411-6417	1.9	4	
148	Impact of conduction type and doping density on thermal oxidation rate of SiC(0001). <i>Applied Physics Express</i> , 2014 , 7, 121301	2.4	4	
147	Ab initio prediction of SiC nanotubes with negative strain energy. <i>Applied Physics Letters</i> , 2014 , 104, 033	3,0 7	4	
146	Progress and future challenges of silicon carbide devices for integrated circuits 2014,		4	
145	A study of SiC Power BJT performance and robustness. <i>Microelectronics Reliability</i> , 2011 , 51, 1773-1777	1.2	4	
144	Observation of novel defect structure in 2H-AlN grown on 6H-SiC(0001) substrates with 3-bilayer-height step-and-terrace structures. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2009 , 206, 1187-1189	1.6	4	
143	High electron mobility achieved in n-channel 4H-SiC MOSFETs oxidized in the presence of nitrogen. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2009 , 206, 2363-2373	1.6	4	
142	Ab initio study of isolated chlorine defects in cubic SiC. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 415802	1.8	4	
141	. IEEE Transactions on Electron Devices, 2008, 55, 1795-1797	2.9	4	
140	Source of Surface Morphological Defects Formed on 4HBiC Homoepitaxial Films. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 7625-7631	1.4	4	
139	Structure Analysis of ZrB2(0001) Surface Prepared byex situHF Treatment. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, L497-L500	1.4	4	
138	Thermal stability of defects in p-type as-grown 6H-SiC. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 306204	1.8	4	
137	Characterization of punch-through phenomenon in SiC-SBD by capacitance-voltage measurement at high reverse bias voltage. <i>IEICE Electronics Express</i> , 2006 , 3, 379-384	0.5	4	
136	Rate-determining process in chemical vapor deposition of SiC on off-axis . <i>Journal of Crystal Growth</i> , 2004 , 270, 455-461	1.6	4	
135	Effects of Parasitic Region in SiC Bipolar Junction Transistors on Forced Current Gain. <i>Materials Science Forum</i> , 2018 , 924, 629-632	0.4	4	
134	Impacts of Finger Numbers on ON-State Characteristics in Multifinger SiC BJTs With Low Base Spreading Resistance. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 2771-2777	2.9	4	

133	1200 V SiC Vertical-Channel-JFETs and Cascode Switches157-191		4
132	Phonon frequencies of a highly strained AlN layer coherently grown on 6H-SiC (0001). <i>AIP Advances</i> , 2017 , 7, 015105	1.5	3
131	Temperature Dependence of Conductivity Modulation in SiC Bipolar Junction Transistors. <i>IEEE Transactions on Electron Devices</i> , 2020 , 67, 1699-1704	2.9	3
130	SiC Vertical-Channel n- and p-JFETs Fully Fabricated by Ion Implantation. <i>Materials Science Forum</i> , 2019 , 963, 841-844	0.4	3
129	Dominant conduction mechanism in TaO x -based resistive switching devices. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, 090914	1.4	3
128	AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter. <i>IEEE Transactions on Electron Devices</i> , 2013 , 60, 2768-2775	2.9	3
127	Quantum-confinement effects on conduction band structure of rectangular cross-sectional GaAs nanowires. <i>Journal of Applied Physics</i> , 2014 , 115, 053713	2.5	3
126	Anharmonic vibrations of the dicarbon antisite defect in 4H-SiC. <i>Applied Physics Letters</i> , 2012 , 100, 1321	0 374	3
125	Thermal stability of deep levels between room temperature and 1500 LC in as-grown 3C-SiC. <i>Journal of Applied Physics</i> , 2009 , 106, 073721	2.5	3
124	Single versus double ion implantation: a deep level study. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 402-406	1.3	3
123	The Effects of Transverse Electric Fields on the Electronic Properties of SiC Nanostructures. <i>Journal of Computational and Theoretical Nanoscience</i> , 2012 , 9, 1850-1859	0.3	3
122	A New Class of Step-and-Terrace Structure Observed on 4H-SiC(0001) after High-Temperature Gas Etching. <i>Applied Physics Express</i> , 2009 , 2, 101603	2.4	3
121	Photoluminescence of 3C-SiC Epilayers Grown on Lattice-Matched Substrates. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 6405-6410	1.4	3
120	Extension of lifetime of silicon field emitter arrays in oxygen ambient by carbon negative ion implantation. <i>Journal of Vacuum Science & Technology B</i> , 2008 , 26, 876		3
119	A study on electro thermal response of SiC power module during high temperature operation. <i>IEICE Electronics Express</i> , 2008 , 5, 597-602	0.5	3
118	Reduction of threading dislocations in nonpolar 4H-AlN on 4H-SiC (11\$ bar 2 \$0) grown by molecular-beam epitaxy with slightly Al-rich conditions. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2007 , 4, 2552-2555		3
117	Growth of high-quality non-polar AlN on 4H-SiC(11🛮0) substrate by molecular-beam epitaxy. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2003 , 2502-2505		3
116	Selective Embedded Growth of 4HBiC Trenches in 4HBiC(0001) Substrates Using Carbon Mask. Japanese Journal of Applied Physics, 2005, 44, 4909-4910	1.4	3

115	Design and Technology Considerations for SiC Bipolar Devices: BJTs, IGBTs, and GTOs389-444		3
114	Comprehensive and systematic design of metal/high-k gate stack for high-performance and highly reliable SiC power MOSFET. <i>Japanese Journal of Applied Physics</i> , 2020 , 59, 021001	1.4	3
113	Analysis of carrier lifetimes in n-type 4H-SiC by rate equations. <i>Applied Physics Express</i> , 2020 , 13, 01100	62.4	3
112	Experimental Study on Short-Channel Effects in Double-Gate Silicon Carbide JFETs. <i>IEEE Transactions on Electron Devices</i> , 2020 , 67, 4538-4540	2.9	3
111	Theoretical analysis of band structure effects on impact ionization coefficients in wide-bandgap semiconductors. <i>Applied Physics Express</i> , 2020 , 13, 041006	2.4	3
110	Determination of Surface Recombination Velocity From CurrentVoltage Characteristics in SiC p-n Diodes. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 4786-4791	2.9	3
109	FranzKeldysh effect in 4H-SiC pB junction diodes under high electric field along the <11\$bar{{bf{2}}}\$0> direction. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, 091007	1.4	2
108	ESR Study on Hydrogen Passivation of Intrinsic Defects in p-Type and Semi-Insulating 4H-SiC. <i>Materials Science Forum</i> , 2016 , 858, 318-321	0.4	2
107	Estimation of Impact Ionization Coefficient in GaN by Photomulitiplication Measurement Utilizing Franz-Keldysh Effect 2019 ,		2
106	Growth, Electrical Characterization, and Electroluminescence of GaN/SiC Heterojunction Diodes and Bipolar Transistors Fabricated on SiC Off-Axis Substrates. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 124102	1.4	2
105	Impact of the Oxygen Amount of an Oxide Layer and Post Annealing on Forming Voltage and Initial Resistance of NiO-based Resistive Switching Cells. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1562, 1		2
104	Epitaxial Growth and Defect Control of SiC for High-Voltage Power Devices. <i>Journal of the Vacuum Society of Japan</i> , 2011 , 54, 362-368		2
103	Anomalously low Ga incorporation in high Al-content AlGaN grown on \$(11{bar {2}}0)\$ non-polar plane by molecular beam epitaxy. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 1498-1500	1.6	2
102	Influence of Effective Fixed Charges on Short-Channel Effects in SiC Metal®xideBemiconductor Field-Effect Transistors. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 024204	1.4	2
101	Electrostatic-Actuated Suspended Ribbon Structure Fabricated in Single-Crystalline SiC by Selective Photoelectrochemical Etching. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 111101	1.4	2
100	Determination of the thermo-optic coefficients of GaN and AlN up to 515 LC. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2009 , 6, S776-S779		2
99	Temperature Dependence of Electrical Properties of NiO Thin Films for Resistive Random Access Memory. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1071, 1		2
98	Hydrogen Implantation and Annealing-Induced Exfoliation Process in SiC Wafers with Various Crystal Orientations. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 5352-5354	1.4	2

97	Dose Designing and Fabrication of 4H-SiC Double RESURF MOSFETs		2
96	MOS Interface Properties and MOSFET Performance on 4H-SiC{0001} and Non-Basal Faces Processed by N2O Oxidation. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 815, 264		2
95	Epitaxial growth of 4HBiC(033 8) and control of MOS interface. <i>Applied Surface Science</i> , 2003 , 216, 497-5	5 6 .17	2
94	High-Sensitivity Analysis of Z1Center Concentration in 4H-SiC Grown by Horizontal Cold-Wall Chemical Vapor Deposition. <i>Japanese Journal of Applied Physics</i> , 2002 , 41, 2987-2988	1.4	2
93	Four Current Examples of Characterization of Silicon Carbide. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 742, 311		2
92	Epitaxial Growth of SiC on Non-Typical Orientations and MOS Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 640, 1		2
91	Vanadium Ion Implanted Guard Rings for High-Voltage 4H-SiC Schottky Rectifiers. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, L1216-L1218	1.4	2
90	4H-SiC/6H-SiC interface structures studied by high-resolution transmission electron microscopy. <i>Applied Physics Letters</i> , 1993 , 63, 2636-2637	3.4	2
89	Growth of Nonpolar AlN and AlGaN on 4H-SiC (1-100) by Molecular Beam Epitaxy. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 892, 638		2
88	Transformation of hollow-core screw dislocations: transitional configuration of superscrew dislocations. <i>Japanese Journal of Applied Physics</i> , 2020 , 59, 095502	1.4	2
87	Lateral spreads of ion-implanted Al and P atoms in silicon carbide. <i>Japanese Journal of Applied Physics</i> , 2021 , 60, 051001	1.4	2
86	Electron mobility along and directions in 4H-SiC over a wide range of donor concentration and temperature. <i>Applied Physics Express</i> ,	2.4	2
85	Strain control in AlN top layer by inserting an ultrathin GaN interlayer on an AlN template coherently grown on SiC(0001) by PAMBE. <i>Physica Status Solidi (B): Basic Research</i> , 2016 , 253, 814-818	1.3	2
84	Analysis of High-Field Hole Transport in Germanium and Silicon Nanowires Based on Boltzmann's Transport Equation. <i>IEEE Nanotechnology Magazine</i> , 2016 , 1-1	2.6	2
83	Analysis of ballistic and quasi-ballistic hole transport properties in germanium nanowires based on an extended Top of the Barrier model. <i>Solid-State Electronics</i> , 2016 , 123, 143-149	1.7	2
82	Spin transport in n-type 3CBiC observed in a lateral spin-pumping device. <i>Solid State Communications</i> , 2020 , 305, 113754	1.6	2
81	Progress in High and Ultrahigh Voltage Silicon Carbide Device Technology 2018,		2
80	Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy 1997 , 162, 199		2

79	Bulk Growth of SiC Review on Advances of SiC Vapor Growth for Improved Doping and Systematic Study on Dislocation Evolution1-31		2
78	Bulk and Epitaxial Growth of Micropipe-Free Silicon Carbide on Basal and Rhombohedral Plane Seeds3	3-61	2
77	Formation of Extended Defects in 4H-SiC Epitaxial Growth and Development of a Fast Growth Technic	ue63-9	942
76	4H-SiC MISFETs with Nitrogen-Containing Insulators235-265		2
75	Extreme Temperature 6H-SiC JFET Integrated Circuit Technology121-155		2
74	Grain-boundary structures and their impact on the electrical properties of NiO films deposited by reactive sputtering. <i>Thin Solid Films</i> , 2020 , 709, 138203	2.2	1
73	Dual-color-sub-bandgap-light-excited isothermal capacitance transient spectroscopy for quick measurement of carbon-related hole trap density in n-type GaN. <i>Japanese Journal of Applied Physics</i> , 2020 , 59, SGGD05	1.4	1
72	Two modes of bipolar resistive switching characteristics in asymmetric TaOx-based ReRAM cells. <i>MRS Advances</i> , 2019 , 4, 2601-2607	0.7	1
71	Influence of vacuum annealing on interface properties of SiC (0001) MOS structures. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, 078001	1.4	1
70	Conduction-type dependence of thermal oxidation rate on SiC(0001) 2014 ,		1
69	Determination of Phase Diagram of Electron Hole Systems in 4H-SiC. <i>Journal of the Physical Society of Japan</i> , 2013 , 82, 063703	1.5	1
68	Suppression of Divergence of Low Energy Ion Beams by Space Charge Neutralization with Low Energy Electrons Emitted from Field Emitter Arrays 2011 ,		1
67	Time-Dependent Forming Characteristics in Pt/NiO/Pt Stack Structures for Resistive Random Access Memory. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1430, 112		1
66	Demonstration of SiC heterojunction bipolar transistors with AlN/GaN short-period superlattice widegap emitter 2009 ,		1
65	MOS interface properties and MOSFET performance on 4H-SiC{0001} and (11-20) processed by N/sub 2/O oxidation		1
64	Influence of Substrate Misorientation Angle and Direction in Growth of GaN on Off-axis SiC (0001). <i>Materials Research Society Symposia Proceedings</i> , 2004 , 831, 654		1
63	Either step-flow or layer-by-layer growth for AIN on SiC (0001) substrates. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 798, 377		1
62	Surface Control of ZrB2 (0001) Substrate for Molecular-Beam Epitaxy of GaN. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 798, 209		1

61	High-Purity and Thick 4H- and 6H-SiC(0001) Epitaxial Growth by Cold-Wall Chemical Vapor Deposition and High-Voltage pin Diodes. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, L319-L322	1.4	1
60	Epitaxial Growth and Characterization of 4H-SiC(11🛭0) and (03և). <i>Materials Research Society Symposia Proceedings</i> , 2002 , 742, 111		1
59	SiO2/SiC Interface Properties on Various Surface Orientations. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 742, 451		1
58	Step-controlled epitaxial growth of SiC and its conductivity control		1
57	Nucleation and Step Dynamics in SIC Epitaxial Growth. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 339, 369		1
56	Breakdown Electric Field of GaN p+-n and p-n+ Junction Diodes with Various Doping Concentrations. <i>IEEE Electron Device Letters</i> , 2021 , 1-1	4.4	1
55	Suppressed Surface-Recombination Structure and Surface Passivation for Improving Current Gain of 4H-SiC BJTs445-465		1
54	Microscopic mechanism of carbon annihilation upon SiC oxidation due to phosphorus treatment: Density functional calculations combined with ion mass spectrometry. <i>Applied Physics Express</i> , 2018 , 11, 121301	2.4	1
53	Photoionization cross section ratio of nitrogen-site carbon in GaN under sub-bandgap-light irradiation determined by isothermal capacitance transient spectroscopy. <i>Applied Physics Express</i> ,	2.4	1
52	Depth profiles of electron traps generated during reactive ion etching in n-type 4H-SiC characterized by using isothermal capacitance transient spectroscopy. <i>Journal of Applied Physics</i> , 2021 , 130, 105703	2.5	1
51	Lifetime-Killing Defects in 4H-SiC Epilayers and Lifetime Control by Low-Energy Electron Irradiation267	-286	1
50	Identification and Carrier Dynamics of the Dominant Lifetime Limiting Defect in nIAH-SiC Epitaxial Laye	гѕ287-	317
49	Analysis of Interface Trap Parameters from Double-Peak Conductance Spectra Taken on N-Implanted 3C-SiC MOS Capacitors363-374		1
48	Application of Silicon Carbide Transistors in Photovoltaic Inverters347-388		1
47	Carrier Trapping Effects on Forward Characteristics of SiC p-i-n Diodes Fabricated on High-Purity Semi-Insulating Substrates. <i>IEEE Transactions on Electron Devices</i> , 2022 , 69, 1989-1994	2.9	1
46	High-voltage SiC power devices for improved energy efficiency <i>Proceedings of the Japan Academy Series B: Physical and Biological Sciences</i> , 2022 , 98, 161-189	4	1
45	SiC complementary junction field-effect transistor logic gate operation at 623 K. <i>IEEE Electron Device Letters</i> , 2022 , 1-1	4.4	1
44	Impacts of energy relaxation process on quasi-ballistic hole transport capability in germanium and silicon nanowires. <i>Journal of Applied Physics</i> , 2018 , 123, 024305	2.5	O

43	First-principles study of Cl diffusion in cubic SiC. Journal of Applied Physics, 2013, 113, 133706	2.5	O
42	Deep Levels in As-Grown and Electron-Irradiated P-type 4H-SiC. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 911, 4		O
41	Reliability Issues of SiC Power MOSFETs toward High Junction Temperature Operation321-346		O
40	Expansion patterns of single Shockley stacking faults from scratches on 4H-SiC. <i>Japanese Journal of Applied Physics</i> , 2021 , 60, 068001	1.4	О
39	Critical electric field for transition of thermionic field emission/field emission transport in heavily doped SiC Schottky barrier diodes. <i>Applied Physics Letters</i> , 2022 , 120, 172103	3.4	0
38	Characterization of Defects in Silicon Carbide by Raman Spectroscopy 2011 , 243-266		
37	Optical Properties of As-Grown and Process-Induced Stacking Faults in 4H-SiC 2011 , 205-242		
36	Wide-bandgap Semiconductor Devices using Group-III Nitride/SiC Heterointerface. <i>Hyomen Kagaku</i> , 2010 , 31, 651-656		
35	Correlation between Oxygen Composition and Electrical Properties in NiO Thin Films for Resistive Random Access Memory. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1250, 1		
34	Non-destructive detection and visualization of extended defects in 4H-SiC epilayers. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1246, 1		
33	Fabrication of High Performance 3C-SiC Vertical MOSFETs by Reducing Planar Defects 2011 , 95-113		
32	Density Functional Study of Graphene Overlayers on SiC 2011 , 473-492		
31	Identification of the Location of Conductive Filaments Formed in Pt/NiO/Pt Resistive Switching Cells and Investigation on Their Properties. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1430, 118		
30	Fabrication and Electronic Characteristics of Silicon Nanowire MOSFETs. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1080, 1		
29	Low-dislocation-density Nonpolar AlN Grown on 4H-SiC (11-20) Substrates. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 955, 1		
28	Aluminum-Ion Implantation into 4H-SiC (11-20) and (0001). <i>Materials Research Society Symposia Proceedings</i> , 2004 , 815, 141		
27	Impact of SiC surface control on initial growth mode and crystalline quality of AlN grown by molecular-beam epitaxy. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2003 , 2529-2532		
26	A Model for Double Positioning Twin Formation in Cubic SiC on Noncubic SiC Substrates. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 280, 729		

25	Surface Step Structures of SiC Epitaxial Layers Grown on Off-axis SiC (0001). <i>Materia Japan</i> , 2001 , 40, 1007-1007	0.1
24	Formation of Deep pn Junctions by High-Energy Al and B Ion Implantations into SiC. <i>IEEJ Transactions on Electronics, Information and Systems</i> , 2002 , 122, 17-22	0.1
23	Homoepitaxial Growth on 4H-SiC (0001)-Vicinal Faces. <i>Zairyo/Journal of the Society of Materials Science, Japan</i> , 2004 , 53, 1323-1327	0.1
22	??????????????????????????????????????	
21	Rapid Revolution Speed Control of the Brushless DC Motor for Automotive LIDAR Applications. <i>IEICE Transactions on Electronics</i> , 2020 , E103.C, 324-331	0.4
20	Non-Basal Plane SiC Surfaces: Anisotropic Structures and Low-Dimensional Electron Systems375-394	
19	Measurements of Impact Ionization Coefficients of Electrons and Holes in 4H-SiC and their Application to Device Simulation341-362	
18	Effect of an Intermediate Graphite Layer on the Electronic Properties of Metal/SiC Contacts35-50	
17	Development of SiC Diodes, Power MOSFETs and Intelligent Power Modules291-319	
16	Silicon Carbide Power-Device Products latatus and Upcoming Challenges with a Special Attention to Traditional, Nonmilitary Industrial Applications21-33	
15	EPR Identification of Intrinsic Defects in SiC147-179	
14	Epitaxial Graphene: A New Material453-472	
13	Reliability Aspects of SiC Schottky Diodes51-75	
12	Inversion Layer Electron Transport in 4H-SiC Metal®xideBemiconductor Field-Effect Transistors267-29	0
11	Design, Process, and Performance of All-Epitaxial Normally-Off SiC JFETs77-119	
10	Comparative Columnar Porous Etching Studies on n-Type 6H SiC Crystalline Faces395-409	
9	Alternative Techniques to Reduce Interface Traps in n-Type 4H-SiC MOS Capacitors193-214	
8	Identification of Intrinsic Defects in SiC: Towards an Understanding of Defect Aggregates by Combining Theoretical and Experimental Approaches115-145	

LIST OF PUBLICATIONS

7	Electrical and Topographical Characterization of Aluminum Implanted Layers in 4H Silicon Carbide181-204	
6	Micro- and Nanomechanical Structures for Silicon Carbide MEMS and NEMS411-451	
5	Optical Beam Induced Current Measurements: Principles and Applications to SiC Device Characterization319-340	
4	SiC Avalanche Photodiodes and Photomultipliers for Ultraviolet and Solar-Blind Light Detection467-486	
3	Orientation and size effects on electronic structure of rectangular cross-sectional Sn nanowires. Journal of Applied Physics, 2021, 129, 224302 2.5	
2	Structural determination of phosphosilicate glass based on first-principles molecular dynamics	

High-resolution electron microscopy and low-temperature electron diffraction studies of a Bi2212 single crystal grown by the floating zone method. *Journal of Superconductivity and Novel Magnetism*, **1997**, 10, 649-655

calculation. Japanese Journal of Applied Physics, 2019, 58, 011001

1.4