
Charles Rhett Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/557769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	URBANIZATION OF AQUATIC SYSTEMS: DEGRADATION THRESHOLDS, STORMWATER DETECTION, AND THE LIMITS OF MITIGATION. Journal of the American Water Resources Association, 1997, 33, 1077-1090.	1.0	801
2	Hydrologic Connectivity and the Contribution of Stream Headwaters to Ecological Integrity at Regional Scales ¹ . Journal of the American Water Resources Association, 2007, 43, 5-14.	1.0	427
3	Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. Journal of the North American Benthological Society, 2009, 28, 1080-1098.	3.0	312
4	Linkages between forest soils and water quality and quantity. Forest Ecology and Management, 2009, 258, 2269-2281.	1.4	268
5	Vegetated roofs for stormwater management at multiple spatial scales. Landscape and Urban Planning, 2007, 80, 84-94.	3.4	256
6	FOREST COVER, IMPERVIOUS-SURFACE AREA, AND THE MITIGATION OF STORMWATER IMPACTS. Journal of the American Water Resources Association, 2002, 38, 835-845.	1.0	243
7	Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. Journal of Hydrology, 2010, 383, 256-268.	2.3	151
8	Ecological Benefits of Reduced Hydrologic Connectivity in Intensively Developed Landscapes. BioScience, 2010, 60, 37-46.	2.2	120
9	Runoff Curve Numbers for 10 Small Forested Watersheds in the Mountains of the Eastern United States. Journal of Hydrologic Engineering - ASCE, 2012, 17, 1188-1198.	0.8	94
10	Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States. Water Resources Research, 2011, 47, .	1.7	92
11	Woody debris and channel morphology in first- and second-order forested channels in Washington's coast ranges. Water Resources Research, 2002, 38, 16-1-16-14.	1.7	83
12	TIMBER HARVEST IMPACTS ON SMALL HEADWATER STREAM CHANNELS IN THE COAST RANGES OF WASHINGTON. Journal of the American Water Resources Association, 2001, 37, 1533-1549.	1.0	69
13	Hillslope infiltration and lateral downslope unsaturated flow. Water Resources Research, 1992, 28, 2533-2539.	1.7	64
14	Water sustainability and watershed storage. Nature Sustainability, 2018, 1, 378-379.	11.5	56
15	Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach. Hydrology and Earth System Sciences, 2015, 19, 125-135.	1.9	55
16	CONCENTRATED FLOW BREAKTHROUGHS MOVING THROUGH SILVICULTURAL STREAMSIDE MANAGEMENT ZONES: SOUTHEASTERN PIEDMONT, USA. Journal of the American Water Resources Association, 2004, 40, 1043-1052.	1.0	51
17	Title is missing!. Hydrobiologia, 2000, 441, 123-132.	1.0	45
18	Interflow Is Not Binary: A Continuous Shallow Perched Layer Does Not Imply Continuous Connectivity. Water Resources Research, 2018, 54, 5921-5932.	1.7	44

#	Article	IF	CITATIONS
19	Effects of irrigation withdrawals on streamflows in a karst environment: lower Flint River Basin, Georgia, USA. Hydrological Processes, 2012, 26, 523-534.	1.1	43
20	Interflow dynamics on a low relief forested hillslope: Lots of fill, little spill. Journal of Hydrology, 2016, 534, 648-658.	2.3	43
21	SEDIMENT TRAPPING WITHIN FORESTRY STREAMSIDE MANAGEMENT ZONES: GEORGIA PIEDMONT, USA. Journal of the American Water Resources Association, 2004, 40, 1421-1431.	1.0	42
22	Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA. Journal of Hydrology: Regional Studies, 2016, 5, 1-19.	1.0	42
23	Macroinvertebrate response to logging in coastal headwater streams of Washington, U.S.A Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 529-537.	0.7	38
24	Long-Term Ecological Research and Evolving Frameworks of Disturbance Ecology. BioScience, 2020, 70, 141-156.	2.2	37
25	Modeled riparian stream shading: Agreement with field measurements and sensitivity to riparian conditions. Journal of Hydrology, 2012, 428-429, 142-151.	2.3	34
26	Estimation of Mussel Population Response to Hydrologic Alteration in a Southeastern U.S. Stream. Environmental Management, 2011, 48, 109-122.	1.2	33
27	When interflow also percolates: downslope travel distances and hillslope process zones. Hydrological Processes, 2014, 28, 3195-3200.	1.1	33
28	Environmental effects of shortâ€rotation woody crops for bioenergy: What is and isn't known. GCB Bioenergy, 2019, 11, 554-572.	2.5	32
29	Wetness index based on landscape position and topography (WILT): Modifying TWI to reflect landscape position. Journal of Environmental Management, 2020, 255, 109863.	3.8	31
30	Interactions among hydraulic conductivity distributions, subsurface topography, and transport thresholds revealed by a multitracer hillslope irrigation experiment. Water Resources Research, 2016, 52, 6186-6206.	1.7	30
31	Title is missing!. Hydrobiologia, 2002, 479, 143-154.	1.0	29
32	Modeling Phosphorus in the Lake Allatoona Watershed Using SWAT: II. Effect of Land Use Change. Journal of Environmental Quality, 2009, 38, 121-129.	1.0	26
33	Herbaceous Versus Forested Riparian Vegetation: Narrow and Simple Versus Wide, Woody and Diverse Stream Habitat. River Research and Applications, 2015, 31, 847-857.	0.7	25
34	Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical lowâ€gradient watersheds. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 422-437.	1.3	25
35	Modeling Phosphorus in the Lake Allatoona Watershed Using SWAT: I. Developing Phosphorus Parameter Values. Journal of Environmental Quality, 2009, 38, 111-120.	1.0	23
36	Localâ€scale and watershedâ€scale determinants of summertime urban stream temperatures. Hydrological Processes, 2014, 28, 2427-2438.	1.1	23

#	Article	IF	CITATIONS
37	Woody bioenergy crop selection can have large effects on water yield: A southeastern United States case study. Biomass and Bioenergy, 2018, 117, 180-189.	2.9	20
38	Changes in Diameter Growth of Taxodium distichum in Response to Flow Alterations in the Savannah River. Wetlands, 2012, 32, 59-71.	0.7	18
39	Water Quality Signals from Rural Land Use and Exurbanization in a Mountain Landscape: What's Clear and What's Confounded?. Journal of the American Water Resources Association, 2017, 53, 1212-1228.	1.0	18
40	Simple, accurate, and efficient revisions to MacCormack and Saulyev schemes: High Peclet numbers. Applied Mathematics and Computation, 2007, 186, 610-622.	1.4	16
41	Contaminant Retention Potential of Forested Filter Strips Established as SMZs in the Piedmont of Georgia ¹ . Journal of the American Water Resources Association, 2008, 44, 1564-1577.	1.0	16
42	Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States. Forest Ecology and Management, 2017, 400, 181-198.	1.4	16
43	Time lags: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03431.	1.0	16
44	A model of transient, topographically driven, saturated subsurface flow. Water Resources Research, 1992, 28, 1417-1427.	1.7	15
45	AVERAGE DISCHARGE, PERENNIAL FLOW INITIATION, AND CHANNEL INITIATION - SMALL SOUTHERN APPALACHIAN BASINS. Journal of the American Water Resources Association, 2004, 40, 639-646.	1.0	15
46	Multiple drivers, scales, and interactions influence southern Appalachian stream salamander occupancy. Ecosphere, 2018, 9, e02150.	1.0	15
47	Beyond the urban gradient: barriers and opportunities for timely studies of urbanization effects on aquatic ecosystems. Journal of the North American Benthological Society, 2009, 28, 1038-1050.	3.0	14
48	A Paired Watershed Investigation of Silvicultural Best Management Practices Revisited: B.F. Grant Memorial Forest, Georgia. Forest Science, 2012, 58, 652-662.	0.5	14
49	Development and Evaluation of a Stream Channel Classification for Estimating Fish Responses to Changing Streamflow. Transactions of the American Fisheries Society, 2009, 138, 1123-1137.	0.6	12
50	Rethinking foundation species in a changing world: The case for Rhododendron maximum as an emerging foundation species in shifting ecosystems of the southern Appalachians. Forest Ecology and Management, 2020, 472, 118240.	1.4	12
51	Passive Pulsing Air lassifier Theory. Journal of Environmental Engineering, ASCE, 1988, 114, 106-109.	0.7	11
52	Prescribed burning effects on the hydrologic behavior of gullies in the South Carolina Piedmont. Forest Ecology and Management, 2010, 259, 1959-1970.	1.4	10
53	Clearcutting and pine planting effects on nutrient concentrations and export in two mixed use headwater streams: Upper Coastal Plain, Southeastern USA. Hydrological Processes, 2015, 29, 13-28.	1.1	10
54	Patch occupancy of stream fauna across a land cover gradient in the southern Appalachians, USA. Hydrobiologia, 2016, 773, 163-175.	1.0	10

#	Article	IF	CITATIONS
55	Effects of instream processes, discharge, and land cover on nitrogen export from southern Appalachian Mountain catchments. Hydrological Processes, 2019, 33, 283-304.	1.1	10
56	Riparian canopy openings on mountain streams: Landscape controls upon temperature increases within openings and cooling downstream. Hydrological Processes, 2020, 34, 1966-1980.	1.1	10
57	Unexpected ecological advances made possible by longâ€ŧerm data: A Coweeta example. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1273.	2.8	9
58	Development and application of simplified continuous hydrologic modeling for drainage design and analysis. Water Science and Application, 2001, , 39-58.	0.3	8
59	Variation of stream temperature among mesoscale habitats within stream reaches: southern Appalachians. Hydrological Processes, 2014, 28, 3041-3052.	1.1	7
60	Herbicide Concentrations in First-Order Streams after Routine Application for Competition Control in Establishing Pine Plantations. Forest Science, 2015, 61, 604-612.	0.5	7
61	Diel Patterns and Temporal Trends in Spawning Activities of Robust Redhorse and River Redhorse in Georgia, Assessed Using Passive Acoustic Monitoring. Transactions of the American Fisheries Society, 2015, 144, 563-576.	0.6	7
62	Do southern Appalachian Mountain summer stream temperatures respond to removal of understory rhododendron thickets?. Hydrological Processes, 2020, 34, 3045-3060.	1.1	7
63	Reply [to "Comment on â€~Hillslope infiltration and lateral downslope unsaturated flow' by C. R. Jacksonâ€]. Water Resources Research, 1993, 29, 4169-4169.	1.7	6
64	CHANNEL RESPONSE FROM SHRUB DOMINATED RIPARIAN COMMUNITIES AND ASSOCIATED EFFECTS ON SALMONTD HABITAT. Journal of the American Water Resources Association, 2001, 37, 1639-1651.	1.0	5
65	Scales and arrangements of large wood in first- through fifth-order streams of the Blue Ridge Mountains. Physical Geography, 2014, 35, 532-560.	0.6	5
66	Effectiveness of forestry best management practices (BMPs) for reducing the risk of forest herbicide use to aquatic organisms in streams. Forest Ecology and Management, 2017, 404, 258-268.	1.4	5
67	Revisiting the Hewlett and Hibbert (1963) Hillslope Drainage Experiment and Modeling Effects of Decadal Pedogenic Processes and Leaky Soil Boundary Conditions. Water Resources Research, 2020, 56, e2019WR025090.	1.7	5
68	Relationships among forest type, watershed characteristics, and watershed ET in rural basins of the Southeastern US. Journal of Hydrology, 2020, 591, 125316.	2.3	5
69	Dynamic domain kinematic modelling for predicting interflow over leaky impeding layers. Hydrological Processes, 2020, 34, 2895-2910.	1.1	5
70	Do crayfish affect stream ecosystem response to riparian vegetation removal?. Freshwater Biology, 2021, 66, 1423-1435.	1.2	5
71	Distinctive Connectivities of Near-Stream and Watershed-Wide Land Uses Differentially Degrade Rural Aquatic Ecosystems. BioScience, 2022, 72, 144-159.	2.2	5
72	Hydrologic and Phosphorus Export Behavior of Small Streams in Commercial Poultry-Pasture Watersheds1. Journal of the American Water Resources Association, 2011, 47, 367-385.	1.0	4

#	Article	IF	CITATIONS
73	Response: Forestry Best Management Practices: A Mitigated Water Pollution Success Story. Journal of Forestry, 2014, 112, 47-49.	0.5	4
74	The Coweeta Hydrologic Laboratory and the Coweeta <scp>Longâ€Term Ecological Research</scp> Project. Hydrological Processes, 2021, 35, e14302.	1.1	4
75	Water use in a young <i>Pinus taeda</i> bioenergy plantation: Effect of intensive management on stand evapotranspiration. Ecosphere, 2022, 13, .	1.0	4
76	DISCUSSION 1. Journal of the American Water Resources Association, 2001, 37, 751-753.	1.0	3
77	"Urbanization Influences on Aquatic Communities in Northeastern Illinois Streams," by Faith A. Fitzpatrick, Mitchell A. Harris, Terri L. Arnold, and Kevin D. Richards. Journal of the American Water Resources Association, 2005, 41, 219-220.	1.0	3
78	Temporal and spatial variability of invertebrate communities in potential reference headwater streams of the Georgia Piedmont. Journal of Freshwater Ecology, 2012, 27, 273-285.	0.5	3
79	Interactions of Soils and Land Uses with Water Quantity and Quality. , 2015, , 101-126.		3
80	Watershed- to continental-scale influences on winter stormflow in the Southern Blue Ridge Mountains. Journal of Hydrology, 2018, 563, 643-656.	2.3	3
81	Discussion ¹ â€â€œStream Temperature Relationships to Forest Harvest in Western Washington―by Michael M. Pollock, Timothy J. Beechie, Martin Liermann, and Richard E. Bigley ² . Journal of the American Water Resources Association, 2010, 46, 838-842.	1.0	2
82	Using hydrogeomorphic patterns to predict groundwater discharge in a karst basin: Lower Flint River Basin, southwestern Georgia, USA. Journal of Hydrology: Regional Studies, 2019, 23, 100603.	1.0	2
83	Nitrogen and Phosphorus Gradients from a Working Farm through Wetlands to Streams in the Georgia Piedmont, USA. Wetlands, 2020, 40, 2139-2149.	0.7	2
84	Ensemble modeling of watershedâ€scale hydrologic effects of shortâ€rotation woody crop production. Biofuels, Bioproducts and Biorefining, 2021, 15, 1345-1359. Comment on accepters timber harvest influence the dynamics of marine derived nutrients in Southeast	1.9	2
85	Alaska streams?―1Original article by Levi et al. appears in Can. J. Fish. Aquat. Sci. 68(8): 1316–1329 and is available at http://www.nrcresearchpress.com/doi/full/10.1139/f2011-067. Reply by Levi et al. appears in Can. J. Fish. Aquat. Sci. 69: this issue, and is available at http://www.nrcresearchpress.com/doi/full/10.1139/f2012-106 Canadian Journal of Fisheries and Aquatic	0.7	1
86	Sciences, 2012, 69, 1894-1897. Wetland Hydrology. , 2007, , 43-81.		1
87	FORESTRY BEST MANAGEMENT PRACTICES AND THEIR EFFECTIVENESS. Proceedings of the Water Environment Federation, 2002, 2002, 223-235.	0.0	0
88	John D. Hewlett (1922–2004). Eos, 2005, 86, 124.	0.1	0
89	Timber Harvesting. , 2007, , 1219-1222.		0

#	Article	IF	CITATIONS
91	Hydrology: Urban. , 0, , 745-748.		Ο
92	Redefining Waters of the US: a Case Study from the Edge of the Okefenokee Swamp. Wetlands, 2021, 41, 1.	0.7	0