
Eric N Ponnampalam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5577232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative Processes in Muscle Systems and Fresh Meat: Sources, Markers, and Remedies. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 565-597.	5.9	177
2	Causes and Contributing Factors to "Dark Cutting―Meat: Current Trends and Future Directions: A Review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 400-430.	5.9	142
3	Genetic parameters for meat quality traits of Australian lamb meat. Meat Science, 2014, 96, 1016-1024.	2.7	114
4	The impact of supplementing lambs with algae on growth, meat traits and oxidative status. Meat Science, 2014, 98, 135-141.	2.7	88
5	Antioxidant dynamics in the live animal and implications for ruminant health and product (meat/milk) quality: role of vitamin E and selenium. Animal Production Science, 2014, 54, 1525.	0.6	84
6	Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Science, 2020, 165, 108114.	2.7	81
7	Understanding beef flavour and overall liking traits using two different methods for determination of thiobarbituric acid reactive substance (TBARS). Meat Science, 2019, 149, 114-119.	2.7	80
8	Effect of feeding systems on omega-3 fatty acids, conjugated linoleic acid and trans fatty acids in Australian beef cuts: potential impact on human health. Asia Pacific Journal of Clinical Nutrition, 2006, 15, 21-9.	0.3	77
9	Relationship between muscle antioxidant status, forms of iron, polyunsaturated fatty acids and functionality (retail colour) of meat in lambs. Meat Science, 2012, 90, 297-303.	2.7	75
10	Health beneficial long chain omega-3 fatty acid levels in Australian lamb managed under extensive finishing systems. Meat Science, 2014, 96, 1104-1110.	2.7	68
11	Sources of variation of health claimable long chain omega-3 fatty acids in meat from Australian lamb slaughtered at similar weights. Meat Science, 2014, 96, 1095-1103.	2.7	67
12	Comprehensive Profiling of Most Widely Used Spices for Their Phenolic Compounds through LC-ESI-QTOF-MS2 and Their Antioxidant Potential. Antioxidants, 2021, 10, 721.	2.2	66
13	The Synergism of Biochemical Components Controlling Lipid Oxidation in Lamb Muscle. Lipids, 2014, 49, 757-766.	0.7	64
14	Muscle antioxidant (vitamin E) and major fatty acid groups, lipid oxidation and retail colour of meat from lambs fed a roughage based diet with flaxseed or algae. Meat Science, 2016, 111, 154-160.	2.7	64
15	The effect of pH decline rate on the meat and eating quality of beef carcasses. Animal Production Science, 2014, 54, 407.	0.6	63
16	Comparison of the color stability and lipid oxidative stability of fresh and vacuum packaged lamb muscle containing elevated omega-3 and omega-6 fatty acid levels from dietary manipulation. Meat Science, 2001, 58, 151-161.	2.7	61
17	Vitamin E and fatty acid content of lamb meat from perennial pasture or annual pasture systems with supplements. Animal Production Science, 2012, 52, 255.	0.6	61
18	Preliminary estimates of genetic parameters for carcass and meat quality traits in Australian sheep. Animal Production Science, 2010, 50, 1135.	0.6	53

ERIC N PONNAMPALAM

#	Article	IF	CITATIONS
19	Performance, carcass traits, muscle fatty acid composition and meat sensory properties of male Mahabadi goat kids fed palm oil, soybean oil or fish oil. Meat Science, 2012, 92, 848-854.	2.7	53
20	Influence of finishing systems and sampling site on fatty acid composition and retail shelf-life of lamb. Animal Production Science, 2010, 50, 775.	0.6	52
21	High dietary vitamin E and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Ruminant Research, 2016, 137, 17-23.	0.6	52
22	The Effect of Extensive Feeding Systems on Growth Rate, Carcass Traits, and Meat Quality of Finishing Lambs. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 23-38.	5.9	49
23	Cinnamon: A Natural Feed Additive for Poultry Health and Production—A Review. Animals, 2021, 11, 2026.	1.0	48
24	Dietary manipulation of muscle long-chain omega-3 and omega-6 fatty acids and sensory properties of lamb meat. Meat Science, 2002, 60, 125-132.	2.7	46
25	Effects of nitric oxide and oxidation in vivo and postmortem on meat tenderness. Meat Science, 2005, 71, 205-217.	2.7	45
26	Interaction of diet and long ageing period on lipid oxidation and colour stability of lamb meat. Meat Science, 2017, 129, 43-49.	2.7	45
27	Prime Australian lamb supplies key nutrients for human health. Animal Production Science, 2010, 50, 1115.	0.6	44
28	The Sources, Synthesis and Biological Actions of Omega-3 and Omega-6 Fatty Acids in Red Meat: An Overview. Foods, 2021, 10, 1358.	1.9	44
29	Prediction of intramuscular fat content and major fatty acid groups of lamb M. longissimus lumborum using Raman spectroscopy. Meat Science, 2015, 110, 70-75.	2.7	41
30	The effect of palm oil or canola oil on feedlot performance, plasma and tissue fatty acid profile and meat quality in goats. Meat Science, 2013, 94, 165-169.	2.7	39
31	Effects of intensive or pasture finishing in spring and linseed supplementation in autumn on the omega-3 content of lamb meat and its carcass distribution. Animal Production Science, 2010, 50, 130.	0.6	32
32	Genotype and age effects on sheep meat production. 2. Carcass quality traits. Australian Journal of Experimental Agriculture, 2007, 47, 1147.	1.0	30
33	Forms of nâ€3 (ALA, C18:3nâ€3 or DHA, C22:6nâ€3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle nâ€3 Fatty Acids and Liver Gene Expression in Lambs. Lipids, 2015, 50, 1133-1143.	0.7	29
34	Genotype and age at slaughter influence the retail shelf-life of the loin and knuckle from sheep carcasses. Australian Journal of Experimental Agriculture, 2007, 47, 1190.	1.0	28
35	Examination of the effect of ageing and temperature at rigor on colour stability of lamb meat. Meat Science, 2013, 95, 311-316.	2.7	28
36	Intake, growth and carcass characteristics of lambs consuming low digestible hay and cereal grain. Animal Feed Science and Technology, 2004, 114, 31-41.	1.1	26

#	Article	IF	CITATIONS
37	Feed intake, growth, plasma glucose and urea nitrogen concentration, and carcass traits of lambs fed isoenergetic amounts of canola meal, soybean meal, and fish meal with forage based diet. Small Ruminant Research, 2005, 58, 245-252.	0.6	25
38	Unravelling the complex interactions between genetics, animal age and nutrition as they impact on tissue deposition, muscle characteristics and quality of Australian sheep meat. Australian Journal of Experimental Agriculture, 2007, 47, 1229.	1.0	25
39	Effects of chilled and frozen storage conditions on the lamb M. longissimus lumborum fatty acid and lipid oxidation parameters. Meat Science, 2018, 136, 116-122.	2.7	25
40	The hydration status of lambs after lairage at two Australian abattoirs. Australian Journal of Experimental Agriculture, 2006, 46, 909.	1.0	24
41	Genotype and age effects on sheep meat production. 4. Carcass composition predicted by dual energy X-ray absorptiometry. Australian Journal of Experimental Agriculture, 2007, 47, 1172.	1.0	24
42	Genotype and age effects on sheep meat production. 5. Lean meat and fat content in the carcasses of Australian sheep genotypes at 20-, 30- and 40-kg carcass weights. Australian Journal of Experimental Agriculture, 2008, 48, 893.	1.0	23
43	Genetic correlations between meat quality traits and growth and carcass traits in Merino sheep1. Journal of Animal Science, 2018, 96, 3582-3598.	0.2	23
44	Development of VISNIR predictive regression models for ultimate pH, meat tenderness (shear force) and intramuscular fat content of Australian lamb. Meat Science, 2019, 155, 102-108.	2.7	23
45	Rate of carcass components gain, carcass characteristics, and muscle longissimus tenderness in lambs fed dietary protein sources with a low quality roughage diet. Meat Science, 2003, 63, 143-149.	2.7	22
46	Sire and growth path effects on sheep meat production. 1. Growth and carcass characteristics. Australian Journal of Experimental Agriculture, 2007, 47, 1208.	1.0	22
47	Lamb growth performance and carcass weight from rotationally grazed perennial pasture systems compared with annual pasture systems with supplements. Animal Production Science, 2012, 52, 248.	0.6	21
48	Effects of infusing nitric oxide donors and inhibitors on plasma metabolites, muscle lactate production and meat quality in lambs fed a high quality roughage-based diet. Meat Science, 2015, 105, 8-15.	2.7	21
49	Lamb meat colour values (HunterLab CIE and reflectance) are influenced by aperture size (5mm v.) Tj ETQq1 1 0.	784314 rg 2.7	BT /Overlock
50	Accuracy of dual energy X-ray absorptiometry, weight, longissimus lumborum muscle depth and GR fat depth to predict half carcass composition in sheep. Australian Journal of Experimental Agriculture, 2007, 47, 1165.	1.0	20
51	Polyunsaturated fats in meat from Merino, first- and second-cross sheep slaughtered as yearlings. Meat Science, 2009, 83, 314-319.	2.7	19
52	Predicting the composition of lamb carcases using alternative fat and muscle depth measures. Meat Science, 2008, 78, 400-405.	2.7	17
53	Use of lucerne hay in ruminant feeds to improve animal productivity, meat nutritional value and meat preservation under a more variable climate. Meat Science, 2020, 170, 108235.	2.7	17
54	Relationship between real-time ultrasound and carcass measures and composition in heavy sheep. Australian Journal of Experimental Agriculture, 2007, 47, 1304.	1.0	15

#	Article	IF	CITATIONS
55	Differential effects of natural palm oil, chemically- and enzymatically-modified palm oil on weight gain, blood lipid metabolites and fat deposition in a pediatric pig model. Nutrition Journal, 2011, 10, 53.	1.5	15
56	Muscle Antioxidant Enzymes Activity and Gene Expression Are Altered by Diet-Induced Increase in Muscle Essential Fatty Acid (α-linolenic acid) Concentration in Sheep Used as a Model. Nutrients, 2019, 11, 723.	1.7	15
57	Basal and hormone-stimulated metabolism in lambs varies with breed and diet quality. Domestic Animal Endocrinology, 2012, 42, 94-102.	0.8	14
58	The expression of genes encoding enzymes regulating fat metabolism is affected by maternal nutrition when lambs are fed algae high in omega-3. Livestock Science, 2016, 187, 53-60.	0.6	14
59	Relationships between handling, behaviour and stress in lambs at abattoirs. Animal, 2019, 13, 1287-1296.	1.3	14
60	Aged Vacuum Packaged Lamb Cuts Are Less Brown than Fresh Muscle Cuts under Simulated Retail Display. Food and Nutrition Sciences (Print), 2013, 04, 147-153.	0.2	14
61	Differential Response to an Algae Supplement High in DHA Mediated by Maternal Periconceptional Diet: Intergenerational Effects of nâ€6 Fatty Acids. Lipids, 2014, 49, 767-775.	0.7	13
62	The Impact of Antioxidant Supplementation and Heat Stress on Carcass Characteristics, Muscle Nutritional Profile and Functionality of Lamb Meat. Animals, 2020, 10, 1286.	1.0	11
63	Lipid Oxidation and Colour Stability of Lamb and Yearling Meat (Muscle longissimus lumborum) from Sheep Supplemented with Camelina-Based Diets after Short-, Medium-, and Long-Term Storage. Antioxidants, 2021, 10, 166.	2.2	10
64	Application of small angle X-ray scattering synchrotron technology for measuring ovine meat quality. Meat Science, 2016, 117, 122-129.	2.7	9
65	Determination of optimum carcass weight for meat quality and fatty acid composition in fat-tailed male and female Chall lambs. Tropical Animal Health and Production, 2019, 51, 545-553.	0.5	8
66	An alternative approach for sustainable sheep meat production: implications for food security. Journal of Animal Science and Biotechnology, 2020, 11, 83.	2.1	8
67	Breed and Nutrition Effects on Meat Quality and Retail Color after Lamb Pre-Slaughter Stress. Meat and Muscle Biology, 2019, 3, .	0.7	7
68	Nutritional background, sire type and dam type affect saturated and monounsaturated (oleic) fatty acid concentration of lambs reared for meat production in Australia. Animal Production Science, 2014, 54, 1358.	0.6	6
69	Comparison of grain-based diet supplemented with synthetic vitamin E and lucerne hay-based diet on blood oxidative stress biomarkers and lamb meat quality. Small Ruminant Research, 2019, 177, 146-152.	0.6	6
70	Moisture content, fatty acid profile and oxidative traits of aged beef subjected to different temperature-time combinations. Meat Science, 2019, 157, 107876.	2.7	6
71	Supplementation of macro algae (Azolla pinnata) in a finishing ration alters feed efficiency, blood parameters, carcass traits and meat sensory properties in lambs. Small Ruminant Research, 2021, 203, 106498.	0.6	6
72	The effects of supplementation methods and length of feeding of zilpaterol hydrochloride on meat characteristics of fattening lambs. Small Ruminant Research, 2015, 131, 107-112.	0.6	4

#	Article	lF	CITATIONS
73	Understanding the action of muscle iron concentration on dark cutting: An important aspect affecting consumer confidence of purchasing meat. Meat Science, 2020, 167, 108156.	2.7	2
74	The texture and mastication properties of sheep <i>biceps femoris</i> from different finishing feeds and retail packaging methods. Journal of Texture Studies, 2022, 53, 185-195.	1.1	1
75	Meat Products: From Animal (Farm) to Meal (Fork). Foods, 2022, 11, 933.	1.9	1