
Larisa Novoselova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5577157/publications.pdf Version: 2024-02-01

LARISA NOVOSELOVA

#	Article	IF	CITATIONS
1	Nanoscale magnetite: New synthesis approach, structure and properties. Applied Surface Science, 2021, 539, 148275.	6.1	29
2	Hematite nanopowder obtained from waste: Iron-removal sludge. Powder Technology, 2016, 287, 364-372.	4.2	25
3	Peat-based sorbents for the purification of contaminated environments: A review. Solid Fuel Chemistry, 2008, 42, 251-262.	0.7	14
4	Mo and MoO 3 powders: Structure and resistance to CO. Journal of Alloys and Compounds, 2014, 615, 784-791.	5.5	13
5	The influence of thermal treatment on the properties of sorbents prepared from water conditioning precipitates. Russian Journal of Physical Chemistry A, 2009, 83, 2127-2132.	0.6	9
6	The structure of sorbents based on thermally activated iron-containing water preparation precipitate. Russian Journal of Physical Chemistry A, 2010, 84, 1033-1038.	0.6	8
7	Preparation and study of properties of sulfonic acid ion exchangers based on polypropylene fibrous material. Russian Journal of Applied Chemistry, 2006, 79, 372-376.	0.5	7
8	Composition, structure, and sorbability of the thermally treated water deironing precipitate with respect to carbon monoxide. Powder Technology, 2013, 243, 149-154.	4.2	7
9	Hematite nanoparticle clusters with remarkably high magnetization synthesized from water-treatment waste by one-step "sharp high-temperature dehydration― RSC Advances, 2017, 7, 51298-51302.	3.6	7
10	Aluminosilicate microspheres in fly ashes from thermal power plants and their use for the removal of petroleum and phenol from water. Solid Fuel Chemistry, 2008, 42, 177-182.	0.7	6
11	Polypropylene Fibre with Graft Styrene. Part 1. International Polymer Science and Technology, 2004, 31, 22-24.	0.1	5
12	Utilization of water treatment sludge in processes of oil recovery from aqueous media. Petroleum Chemistry, 2008, 48, 67-70.	1.4	5
13	Polypropylene Fibres with Grafted Acrylic Acid. International Polymer Science and Technology, 2003, 30, 31-34.	0.1	5
14	The Properties of Products and the Governing Laws of the Process of Grafting Acrylic Acid to Polypropylene Fibre. Part 2. International Polymer Science and Technology, 2005, 32, 62-66.	0.1	4
15	Heat Stability of Fibrous Sulphonic Acid Materials Based on Polypropylene during Heating in Air. International Polymer Science and Technology, 2008, 35, 37-41.	0.1	4
16	Nanostructure of the products of the thermal treatment of ultradisperse molybdenum powder. Russian Journal of Physical Chemistry A, 2011, 85, 1609-1615.	0.6	4
17	The Possibility of Chemical Modification of Fibrous Materials from Waste Polypropylene Products. International Polymer Science and Technology, 2003, 30, 52-55.	0.1	3
18	Structure and properties of composite nanomaterials: Products of the thermal treatment of molybdenum- and iron-containing powders. Russian Journal of Physical Chemistry A, 2012, 86, 1689-1696.	0.6	3

#	Article	IF	CITATIONS
19	Fibrous Polypropylene–Polystyrene Materials Produced Using Ultrasound. International Polymer Science and Technology, 2007, 34, 33-39.	0.1	2
20	Afibrous sulfonic acid materials for regeneration of used oils. Chemistry and Technology of Fuels and Oils, 2007, 43, 395-399.	0.5	2
21	10.1007/s11494-008-1013-9. , 2010, 48, 67.		0