Stefan Weigert

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/5576873/publications.pdf
Version: 2024-02-01

1 Constructing mutually unbiased bases in dimension six. Physical Review A, 2009, 79, 74
2 Maximal sets of mutually unbiased quantum states in dimension 6. Physical Review A, 2008, 78, 2.5 64802-805.7.862
Quantum Time Evolution in Terms of Nonredundant Probabilities. Physical Review Letters, 2000, 84,2.8
Diagonalization of multicomponent
Review A, 1993, 47, 3506-3512.
2.541
12 How to determine a quantum state by measurements: The Pauli problem for a particle with arbitrarypotential. Physical Review A, 1996, 53, 2078-2083.2.53913 Heisenberg uncertainty relation for three canonical observables. Physical Review A, 2014, 90, .2.53514 Reconstructing the density matrix of a spinsthrough Stern-Gerlach measurements: Il. Journal ofPhysics A, 1999, 32, L269-L274.
19 Mutually unbiased bases for continuous variables. Physical Review A, 2008, 78, . 28

20 The limited role of mutually unbiased product bases in dimension 6. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 102001.
2.1

25
21

> Mutually unbiased bases and semi-definite programming. Journal of Physics: Conference Series, 2010, $254,012008$.
$0.4 \quad 23$

SIMPLE MINIMAL INFORMATIONALLY COMPLETE MEASUREMENTS FOR QUDITS. International Journal of
$2.0 \quad 22$
Modern Physics B, 2006, 20, 1942-1955.

Quantum integrability and action operators in spin dynamics. Chaos, Solitons and Fractals, 1995, 5,
1419-1438.
5.1

DiscreteQ- andP-symbols for spins. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2,
118-121.

25 ON THE IMPOSSIBILITY TO EXTEND TRIPLES OF MUTUALLY UNBIASED PRODUCT BASES IN DIMENSION SIX.
International Journal of Quantum Information, 2012, 10, 1250056.
1.1

20

26 Quantum chaos in the configurational quantum cat map. Physical Review A, 1993, 48, 1780-1798.
2.5

27 Contracting the Wigner kernel of a spin to the Wigner kernel of a particle. Physical Review A, 2000, 63,
28 ÂÂ-symmetry and its spontaneous breakdown explained by anti-linearity. Journal of Optics B: Quantum
and Semiclassical Optics, 2003, 5, S416-S419.
1.4

18
Reconstructing the density matrix of a spinsthrough Stern - Gerlach measurements. Journal ofPhysics A, 1998, 31, L543-L548.
30 The Physical Interpretation of PT-invariant Potentials. European Physical Journal D, 2004, 54, 1139-1142.0.415
31 Optimal Detection of Rotations about Unknown Axes by Coherent and Anticoherent States. Quantum - 0.0 15 the Open Journal for Quantum Science, 0, 4, 285.

Topological quenching of the tunnel splitting for a particle in a double-well potential on a planar
2.5
\square

All mutually unbiased product bases in dimension 6. Journal of Physics A: Mathematical and

A Gleason-type theorem for qubits based on mixtures of projective measurements. Journal of Physics
A: Mathematical and Theoretical, 2019, 52, 055301.

Topologically Quenched Tunnel Splitting in a Spin System Obtained from Quantum-Mechanical
38 Perturbation Theory. Europhysics Letters, 1994, 26, 561-564.
2.0

12

39 The Gram Matrix of a PT-Symmetric Quantum System. European Physical Journal D, 2004, 54, 147-149. 12

How to test for diagonalizability: the discretized PT-invariant square-well potential. European
0.4

12
Physical Journal D, 2005, 55, 1183-1186.

41 Chaos and quantum-nondemolition measurements. Physical Review A, 1991, 43, 6597-6603.
$2.5 \quad 10$

42 Detecting broken -symmetry. Journal of Physics A, 2006, 39, 10239-10246.

Isolated Hadamard matrices from mutually unbiased product bases. Journal of Mathematical Physics,
2012, 53,

Mutually unbiased product bases for multiple qudits. Journal of Mathematical Physics, 2016, 57, .

Geometry of uncertainty relations for linear combinations of position and momentum. Journal of
Physics A: Mathematical and Theoretical, 2018, 51, 025303.

Spatial squeezing of the vacuum and the Casimir effect. Physics Letters, Section A: General, Atomic and
Solid State Physics, 1996, 214, 215-220.

Universality in uncertainty relations for a quantum particle. Journal of Physics A: Mathematical and
Theoretical, 2016, 49, 355303.
2.1

Quantum Particle on a Rotating Loop: Topological Quenching due to a Coriolis-Aharonov-Bohm
48 Effect. Physical Review Letters, 1995, 75, 1435-1438.
7.8

7

49 Preparational Uncertainty Relations for N Continuous Variables. Mathematics, 2016, 4, 49.
$2.2 \quad 7$

General Probabilistic Theories with a Gleason-type Theorem. Quantum - the Open Journal for Quantum
Science, 0, 5, 588.
0.0

Classical degeneracy and the existence of additional constants of motion. American Journal of
0.7

Physics, 1993, 61, 272-277.

Solvable three-state model of a driven double-well potential and coherent destruction of tunneling.
Physical Review A, 1998, 57, 68-78.

An algorithmic test for diagonalizability of finite-dimensional PT-invariant systems. Journal of Physics
A, 2006, 39, 235-245.

Upper Quantum Lyapunov Exponent and Anosov Relations for Quantum Systems Driven by a Classical
Flow. Journal of Statistical Physics, 2007, 127, 699-719.
57 Expanding Hermitian operators in a basis of projectors on coherent spin states. Journal of Optics B:

61 Luìders theorem for coherent-state POVMs. Journal of Mathematical Physics, 2003, 44, 5474.

Affine constellations without mutually unbiased counterparts. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 402002.

Gauge Transformations for a Driven Quantum Particle in an Infinite Square Well. Foundations of
Physics, 1999, 29, 1785-1805.

A quantum search for zeros of polynomials. Journal of Optics B: Quantum and Semiclassical Optics,
2003, 5, S586-S588.
1.4

1

Quantum Groups, Quantum Foundations and Quantum Information: a Festschrift for Tony Sudbery. Journal of Physics: Conference Series, 2010, 254, 011001.
0.4

1

67 Friction causing unpredictability. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 125102.
2.1

0

Paul Busch: Contributions to Quantum Theory. Journal of Physics: Conference Series, 2020, 1638, 012014.

