Nadia D'ambrosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5576625/publications.pdf

Version: 2024-02-01

159573 214788 3,093 49 30 citations h-index papers

47 g-index 49 49 49 3710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The S100B story: from biomarker to active factor in neural injury. Journal of Neurochemistry, 2019, 148, 168-187.	3.9	242
2	Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia, 2003, 43, 218-230.	4.9	235
3	The Dual Role of Microglia in ALS: Mechanisms and Therapeutic Approaches. Frontiers in Aging Neuroscience, 2017, 9, 242.	3.4	180
4	Up-regulation of p2x2, p2x4 receptor and ischemic cell death: prevention by p2 antagonists. Neuroscience, 2003, 120, 85-98.	2.3	147
5	Extracellular ATP and Neurodegeneration. CNS and Neurological Disorders, 2003, 2, 403-412.	4.3	144
6	Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Research Reviews, 2005, 48, 144-156.	9.0	143
7	Copper at synapse: Release, binding and modulation of neurotransmission. Neurochemistry International, 2015, 90, 36-45.	3.8	138
8	P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology, 2002, 42, 489-501.	4.1	131
9	The Proinflammatory Action of Microglial P2 Receptors Is Enhanced in SOD1 Models for Amyotrophic Lateral Sclerosis. Journal of Immunology, 2009, 183, 4648-4656.	0.8	105
10	The NADPH Oxidase Pathway Is Dysregulated by the P2X7 Receptor in the SOD1-G93A Microglia Model of Amyotrophic Lateral Sclerosis. Journal of Immunology, 2013, 190, 5187-5195.	0.8	103
11	P2 receptor web: Complexity and fine-tuning. , 2006, 112, 264-280.		101
12	Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS Journal, 2009, 276, 318-329.	4.7	101
13	Spinal cord pathology is ameliorated by P2X7 antagonism in SOD1-G93A mouse model of amyotrophic lateral sclerosis. DMM Disease Models and Mechanisms, 2014, 7, 1101-9.	2.4	95
14	Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience, 2001, 108, 527-534.	2.3	89
15	Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2013, 22, 4102-4116.	2.9	88
16	Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochemical and Biophysical Research Communications, 2017, 483, 1187-1193.	2.1	72
17	Glucose deprivation and chemical hypoxia: neuroprotection by P2 receptor antagonists. Neurochemistry International, 2001, 38, 189-197.	3.8	63
18	Hypoglycaemia-induced cell death: features of neuroprotection by the P2 receptor antagonist basilen blue. Neurochemistry International, 2001, 38, 199-207.	3.8	61

#	Article	IF	CITATIONS
19	Overexpression of superoxide dismutase 1 protects against \hat{l}^2 -amyloid peptide toxicity: effect of estrogen and copper chelators. Neurochemistry International, 2004, 44, 25-33.	3.8	53
20	Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Frontiers in Cellular Neuroscience, 2015, 9, 211.	3.7	51
21	Neuroprotective effects of modulators of P2 receptors in primary culture of CNS neurones. Neuropharmacology, 1999, 38, 1335-1342.	4.1	49
22	P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNF $\hat{l}\pm$ and potential role in myocardial cell death. Journal of Molecular and Cellular Cardiology, 2005, 39, 929-939.	1.9	48
23	Antagonists of P2 receptor prevent NGF-dependent neuritogenesis in PC12 cells. Neuropharmacology, 2000, 39, 1083-1094.	4.1	47
24	Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1592-1599.	2.6	47
25	ALS: Focus on purinergic signalling. , 2011, 132, 111-122.		41
26	Fibrotic Scar in Neurodegenerative Diseases. Frontiers in Immunology, 2020, 11, 1394.	4.8	41
27	The metabotropic P2Y4 receptor participates in the commitment to differentiation and cell death of human neuroblastoma SH-SY5Y cells. Neurobiology of Disease, 2005, 18, 100-109.	4.4	39
28	Differential toxicity of TAR DNAâ€binding protein 43 isoforms depends on their submitochondrial localization in neuronal cells. Journal of Neurochemistry, 2018, 146, 585-597.	3.9	39
29	Purinergic signalling at the plasma membrane: a multipurpose and multidirectional mode to deal with amyotrophic lateral sclerosis and multiple sclerosis. Journal of Neurochemistry, 2011, 116, 796-805.	3.9	38
30	Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 2014, 8, 279.	3.7	38
31	The Astrocytic S100B Protein with Its Receptor RAGE Is Aberrantly Expressed in SOD1 ^{G93A} Models, and Its Inhibition Decreases the Expression of Proinflammatory Genes. Mediators of Inflammation, 2017, 2017, 1-14.	3.0	38
32	Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (dys)Regulation. Antioxidants and Redox Signaling, 2018, 29, 15-36.	5.4	31
33	Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells, 2021, 10, 686.	4.1	28
34	Pathways of survival induced by NGF and extracellular ATP after growth factor deprivation. Progress in Brain Research, 2004, 146, 93-100.	1.4	25
35	Differences in the neurotoxicity profile induced by ATP and ATPÎ ³ S in cultured cerebellar granule neurons. Neurochemistry International, 2005, 47, 334-342.	3.8	24
36	The S100A4 Transcriptional Inhibitor Niclosamide Reduces Pro-Inflammatory and Migratory Phenotypes of Microglia: Implications for Amyotrophic Lateral Sclerosis. Cells, 2019, 8, 1261.	4.1	24

#	Article	IF	Citations
37	The P2Y4 receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells. Purinergic Signalling, 2006, 2, 575-582.	2.2	23
38	Receptor webs: Can the chunking theory tell us more about it?. Brain Research Reviews, 2008, 59, 1-8.	9.0	18
39	S100A4 in the Physiology and Pathology of the Central and Peripheral Nervous System. Cells, 2021, 10, 798.	4.1	17
40	Protein cooperation: From neurons to networks. Progress in Neurobiology, 2008, 86, 61-71.	5.7	16
41	N-Glycans mutations rule oligomeric assembly and functional expression of P2X3 receptor for extracellular ATP. Glycobiology, 2011, 21, 634-643.	2.5	15
42	UsnRNP trafficking is regulated by stress granules and compromised by mutant ALS proteins. Neurobiology of Disease, 2020, 138, 104792.	4.4	15
43	Targeting S100A4 with niclosamide attenuates inflammatory and profibrotic pathways in models of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2021, 18, 132.	7.2	11
44	Neuroinflammation in Friedreich's Ataxia. International Journal of Molecular Sciences, 2022, 23, 6297.	4.1	11
45	UDP exerts cytostatic and cytotoxic actions in human neuroblastoma SH-SY5Y cells over-expressing P2Y6 receptor. Neurochemistry International, 2010, 56, 670-678.	3.8	9
46	2-ClATP exerts anti-tumoural actions not mediated by P2 receptors in neuronal and glial cell lines. Biochemical Pharmacology, 2004, 67, 621-630.	4.4	8
47	Fibrosis as a common trait in amyotrophic lateral sclerosis tissues. Neural Regeneration Research, 2022, 17, 97.	3.0	6
48	The Contribution of Non-Neuronal Cells in Neurodegeneration: From Molecular Pathogenesis to Therapeutic Challenges. Cells, 2022, 11, 193.	4.1	4
49	Lipid catabolism and mitochondrial uncoupling are stimulated in brown adipose tissue of amyotrophic lateral sclerosis mouse models. Genes and Diseases, 2023, 10, 321-324.	3.4	1