Xu Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5576276/xu-wang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96
papers

6,224
citations

h-index

78
g-index

7,036
ext. papers

9.1
avg, IF

L-index

#	Paper	IF	Citations
96	Insertion of Supramolecular Segments into Covalently Crosslinked Polyurethane Networks towards the Fabrication of Recyclable Elastomers. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2022 , 40, 321-330	3.5	O
95	Hot Melt Super Glue: Multi-Recyclable Polyphenol-Based Supramolecular Adhesives Macromolecular Rapid Communications, 2022 , e2100830	4.8	2
94	Observation of tunable surface plasmon resonances and surface enhanced infrared absorption (SEIRA) based on indium tin oxide (ITO) nanoparticle substrates <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2022 , 271, 120914	4.4	O
93	Self-accelerating photocharge separation in BiOBr ultrathin nanosheets for boosting photoreversible color switching. <i>Chemical Engineering Journal</i> , 2022 , 428, 131235	14.7	8
92	Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> ,	4.4	2
91	Architecture- and Composition-Controlled Self-Assembly of Block Copolymers and Binary Mixtures With Crosslinkable Components: Chain Exchange Between Block Copolymer Nanoparticles <i>Frontiers in Chemistry</i> , 2022 , 10, 833307	5	О
90	Sunlight-Responsive Titania Hydrated Tungsten Oxide Heteronanoparticles/Paper-Based Color-Switching Film for Solar Ultraviolet Radiation Monitors. <i>ACS Applied Nano Materials</i> , 2022 , 5, 4009	9- 4 :617	1
89	Systems Chemistry in Self-Healing Materials. <i>ChemSystemsChem</i> , 2021 , 3, e2100016	3.1	1
88	Estimating the Prevalence of Asymptomatic COVID-19 Cases and Their Contribution in Transmission - Using Henan Province, China, as an Example. <i>Frontiers in Medicine</i> , 2021 , 8, 591372	4.9	1
87	Surface-Enhanced Raman Scattering (SERS) on Indium-Doped CdO (ICO) Substrates: A New Charge-Transfer Enhancement Contribution from Electrons in Conduction Bands. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 17125-17132	3.8	1
86	Epidemic character and environmental factors in epidemic areas of severe fever with thrombocytopenia syndrome in Shandong Province. <i>Ticks and Tick-borne Diseases</i> , 2021 , 12, 101593	3.6	2
85	Amoeba-inspired reengineering of polymer networks. <i>Green Chemistry</i> , 2021 , 23, 2496-2506	10	2
84	Design and Verification of a Modular Reconfigurable Test Platform for Electric Tractors. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 1881	2.6	O
83	The impact of pollutant as selection pressure on conjugative transfer of dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	
82	Mussel-inspired layer-by-layer assembled polymeric films with fast growing and NIR light triggered healing capabilities. <i>European Polymer Journal</i> , 2021 , 158, 110689	5.2	O
81	On-Demand Regulation of Photoreversible Color Switching for Rewritable Paper and Transient Information Encryption. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 44797-44805	9.5	4
80	Graphene oxide suppresses the growth and malignancy of glioblastoma stem cell-like spheroids via epigenetic mechanisms. <i>Journal of Translational Medicine</i> , 2020 , 18, 200	8.5	8

(2019-2020)

79	Radical nephrectomy combined with removal of tumor thrombus from inferior vena cava under real-time monitoring with transesophageal echocardiography: A case report. <i>Medicine (United States)</i> , 2020 , 99, e19392	1.8	1
78	Comparative genomics analysis of c-di-GMP metabolism and regulation in Microcystis aeruginosa. <i>BMC Genomics</i> , 2020 , 21, 217	4.5	2
77	Repairing Creep-Resistant and Kinetically Inert Hydrogels via Yeast Activity-Regulated Energy Dissipation ACS Applied Bio Materials, 2020 , 3, 4507-4513	4.1	2
76	Bioinspired Self-Healing of Kinetically Inert Hydrogels Mediated by Chemical Nutrient Supply. <i>ACS Applied Materials & Applied & Applied</i>	9.5	18
75	Transient Healability of Metallosupramolecular Polymer Networks Mediated by Kinetic Control of Competing Chemical Reactions. <i>Macromolecules</i> , 2020 , 53, 2856-2863	5.5	13
74	Flexible low-voltage paper transistors harnessing ion gel/cellulose fiber composites. <i>Journal of Materials Research</i> , 2020 , 35, 940-948	2.5	5
73	Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/Etatenin signalling. <i>Brain</i> , 2020 , 143, 512-530	11.2	51
72	Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma. <i>EMBO Molecular Medicine</i> , 2020 , 12, e10924	12	18
71	Electrospun poly(vinyl alcohol) nanofiber films containing menthol/Ecyclodextrin inclusion complexes for smoke filtration and flavor retention. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 605, 125378	5.1	7
70	Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. <i>Nature Communications</i> , 2020 , 11, 3823	17.4	94
69	Enzyme-Regulated Healable Polymeric Hydrogels. ACS Central Science, 2020, 6, 1507-1522	16.8	17
68	Tailoring Azlactone-Based Block Copolymers for Stimuli-Responsive Disassembly of Nanocarriers. <i>Langmuir</i> , 2020 , 36, 10200-10209	4	2
67	Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. <i>Science Advances</i> , 2020 , 6,	14.3	24
66	Source analysis and risk assessment of heavy metals in development zones: a case study in Rizhao, China. <i>Environmental Geochemistry and Health</i> , 2020 , 42, 135-146	4.7	11
65	Enzymatically mediated, physiologically triggered N-palmitoyl chitosan hydrogels with temporally modulated high injectability. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 582, 123940	5.1	8
64	Zwitterionic Janus Dendrimer with distinct functional disparity for enhanced protein delivery. <i>Biomaterials</i> , 2019 , 215, 119233	15.6	28
63	Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. <i>Science Advances</i> , 2019 , 5, eaax4961	14.3	107
62	A Binary Supramolecular Assembly with Intense Fluorescence Emission, High pH Stability, and Cation Selectivity: Supramolecular Assembly-Induced Emission Materials. <i>Research</i> , 2019 , 2019, 1454562	2 7.8	10

61	TIGAR promotes neural stem cell differentiation through acetyl-CoA-mediated histone acetylation. <i>Cell Death and Disease</i> , 2019 , 10, 198	9.8	18
60	Combinatorial approaches in post-polymerization modification for rational development of therapeutic delivery systems. <i>Acta Biomaterialia</i> , 2018 , 73, 21-37	10.8	22
59	Versatile Synthesis of Amine-Reactive Microgels by Self-Assembly of Azlactone-Containing Block Copolymers. <i>Macromolecules</i> , 2018 , 51, 3691-3701	5.5	8
58	Monosulfonicpillar[5]arene: Synthesis, Characterization, and Complexation with Tetraphenylethene for Aggregation-Induced Emission. <i>Scientific Reports</i> , 2018 , 8, 4035	4.9	21
57	Polymers with a Coiled Conformation Enable Healing of Wide and Deep Damages in Polymeric Films. <i>ACS Applied Materials & Deep Materials & Deep</i>	9.5	12
56	One-Dimensional Porous Silicon Nanowires with Large Surface Area for Fast Charge?Discharge Lithium-Ion Batteries. <i>Nanomaterials</i> , 2018 , 8,	5.4	24
55	Polycation-telodendrimer nanocomplexes for intracellular protein delivery. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 162, 405-414	6	8
54	Facile surface functionalization of upconversion nanoparticles with phosphoryl pillar[5]arenes for controlled cargo release and cell imaging. <i>Chemical Communications</i> , 2018 , 54, 12990-12993	5.8	28
53	Identification of native charge-transfer status of p-aminothiolphenol adsorbed on noble metallic substrates by surface-enhanced infrared absorption (SEIRA) spectroscopy. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2018 , 204, 532-536	4.4	2
52	Structure-Based Nanocarrier Design for Protein Delivery. <i>ACS Macro Letters</i> , 2017 , 6, 267-271	6.6	13
51	Multifunctional Telodendrimer Nanocarriers Restore Synergy of Bortezomib and Doxorubicin in Ovarian Cancer Treatment. <i>Cancer Research</i> , 2017 , 77, 3293-3305	10.1	33
50	Pollution characteristics and potential ecological risk assessment of metals in the sediments of Xiaoqing River, Jinan. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 15001-15011	5.1	13
49	Mcl-1 small-molecule inhibitors encapsulated into nanoparticles exhibit increased killing efficacy towards HCMV-infected monocytes. <i>Antiviral Research</i> , 2017 , 138, 40-46	10.8	4
48	Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors. <i>ACS Applied Materials & Discrete Supercapacitors</i> .	4 ^{9.5}	19
47	Moisture-triggered physically transient electronics. <i>Science Advances</i> , 2017 , 3, e1701222	14.3	88
46	The ecological risk assessment and suggestions on heavy metals in river sediments of Jinan. <i>Water Science and Technology</i> , 2017 , 76, 2177-2187	2.2	5
45	Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells. <i>ACS Applied Materials & District Material</i>	9.5	9
44	Contribution of BDNF/TrkB signalling in the rACC to the development of pain-related aversion via activation of ERK in rats with spared nerve injury. <i>Brain Research</i> , 2017 , 1671, 111-120	3.7	14

(2015-2017)

43	Riboflavin-containing telodendrimer nanocarriers for efficient doxorubicin delivery: High loading capacity, increased stability, and improved anticancer efficacy. <i>Biomaterials</i> , 2017 , 141, 161-175	15.6	25
42	Affinity-controlled protein encapsulation into sub-30 hm telodendrimer nanocarriers by multivalent and synergistic interactions. <i>Biomaterials</i> , 2016 , 101, 258-71	15.6	20
41	Solution Properties of Architecturally Complex Multiarm Star Diblock Copolymers in a Nonselective and Selective Solvent for the Inner Block. <i>Macromolecules</i> , 2016 , 49, 2288-2297	5.5	6
40	Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries. <i>ACS Applied Materials & Discrete Materials & Discr</i>	9.5	165
39	Ultra-large optical modulation of electrochromic porous WO film and the local monitoring of redox activity. <i>Chemical Science</i> , 2016 , 7, 1373-1382	9.4	153
38	Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. <i>Nanoscale</i> , 2016 , 8, 348-57	7.7	127
37	Sulfidation of NiMn-Layered Double Hydroxides/Graphene Oxide Composites toward Supercapacitor Electrodes with Enhanced Performance. <i>Advanced Energy Materials</i> , 2016 , 6, 1501745	21.8	205
36	Tunable Lipidoid-Telodendrimer Hybrid Nanoparticles for Intracellular Protein Delivery in Brain Tumor Treatment. <i>Small</i> , 2016 , 12, 4185-92	11	15
35	A drug-specific nanocarrier design for efficient anticancer therapy. <i>Nature Communications</i> , 2015 , 6, 74	49 7.4	112
34	Impact of chain microstructure on solution and thin film self-assembly of PCHD-based semi-flexible/flexible diblock copolymers. <i>Soft Matter</i> , 2015 , 11, 6509-19	3.6	4
33	Fine-tuning vitamin E-containing telodendrimers for efficient delivery of gambogic acid in colon cancer treatment. <i>Molecular Pharmaceutics</i> , 2015 , 12, 1216-29	5.6	38
32	Titanium doped niobium oxide for stable pseudocapacitive lithium ion storage and its application in 3 V non-aqueous supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21706-21712	13	33
31	Layer-by-Layer Assembly of a Self-Healing Anticorrosion Coating on Magnesium Alloys. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27271-8	9.5	94
30	Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. <i>Biomaterials</i> , 2015 , 37, 456-468	15.6	106
29	A polydopamine coated polyaniline single wall carbon nanotube composite material as a stable supercapacitor cathode in an organic electrolyte. <i>Journal of Materials Research</i> , 2015 , 30, 3575-3583	2.5	11
28	Composites: Oxidative Intercalation for Monometallic Ni2+-Ni3+ Layered Double Hydroxide and Enhanced Capacitance in Exfoliated Nanosheets (Small 17/2015). <i>Small</i> , 2015 , 11, 1986-1986	11	1
27	Oxygen-Ions-Mediated Pseudocapacitive Charge Storage in Molybdenum Trioxide Nanobelts.		
	ChemNanoMat, 2015, 1, 403-408	3.5	3

25	Enhanced Electrochromism with Rapid Growth Layer-by-Layer Assembly of Polyelectrolyte Complexes. <i>Advanced Functional Materials</i> , 2015 , 25, 401-408	15.6	46
24	Influences of anterior capsule polishing on effective lens position after cataract surgery: a randomized controlled trial. <i>International Journal of Clinical and Experimental Medicine</i> , 2015 , 8, 13769-7	75	7
23	Graphene: Highly Stretchable Piezoresistive GrapheneNanocellulose Nanopaper for Strain Sensors (Adv. Mater. 13/2014). <i>Advanced Materials</i> , 2014 , 26, 1950-1950	24	15
22	Stretchable Silver-Zinc Batteries Based on Embedded Nanowire Elastic Conductors. <i>Advanced Energy Materials</i> , 2014 , 4, 1301396	21.8	103
21	Aniline Tetramer-Graphene Oxide Composites for High Performance Supercapacitors. <i>Advanced Energy Materials</i> , 2014 , 4, 1400781	21.8	38
20	Achieving High Rate Performance in Layered Hydroxide Supercapacitor Electrodes. <i>Advanced Energy Materials</i> , 2014 , 4, 1301240	21.8	146
19	Control of Self-Assembled Structure through Architecturally and Compositionally Complex Block Copolymer Surfactant Mixtures. <i>Macromolecules</i> , 2014 , 47, 7138-7150	5.5	21
18	BIOINSPIRED SELF-HEALING COATINGS. World Scientific Series in Nanoscience and Nanotechnology, 2014 , 391-417	0.1	1
17	Optically Transparent Antibacterial Films Capable of Healing Multiple Scratches. <i>Advanced Functional Materials</i> , 2014 , 24, 403-411	15.6	107
16	Nanowire Photodetectors: An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure (Adv. Mater. 6/2014). <i>Advanced Materials</i> , 2014 , 26, 979-979	24	
15	Rational design of a high performance all solid state flexible micro-supercapacitor on paper. <i>RSC Advances</i> , 2013 , 3, 15827	3.7	40
14	Synthesis of pyramidal and prismatic hexagonal MoO3 nanorods using thiourea. <i>CrystEngComm</i> , 2013 , 15, 7663	3.3	23
13	Gambogic acid as a non-competitive inhibitor of ATP-binding cassette transporter B1 reverses the multidrug resistance of human epithelial cancers by promoting ATP-binding cassette transporter B1 protein degradation. <i>Basic and Clinical Pharmacology and Toxicology</i> , 2013 , 112, 25-33	3.1	39
12	Manganese oxide micro-supercapacitors with ultra-high areal capacitance. <i>Nanoscale</i> , 2013 , 5, 4119-22	7.7	95
11	Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. <i>Nanoscale</i> , 2012 , 4, 7266-7	2 ^{7.7}	365
10	Cryogel Synthesis of Hierarchical Interconnected Macro-/Mesoporous Co3O4 with Superb Electrochemical Energy Storage. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 4930-4935	3.8	79
9	Dodecyl sulfate-induced fast faradic process in nickel cobalt oxidefieduced graphite oxide composite material and its application for asymmetric supercapacitor device. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23114		297
8	Layer-by-layer assembly for rapid fabrication of thick polymeric films. <i>Chemical Society Reviews</i> , 2012 , 41, 5998-6009	58.5	279

LIST OF PUBLICATIONS

7 Water-Enabled Self-Healing of Polyelectrolyte Multilayer Coatings. *Angewandte Chemie*, **2011**, 123, 11580611583

6	Water-enabled self-healing of polyelectrolyte multilayer coatings. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11378-81	16.4	258
5	Layer-by-layer deposition of magnetic microgel films on plastic surfaces for the preparation of magnetic resonance visibility enhancing coatings. <i>Journal of Materials Chemistry</i> , 2010 , 20, 555-560		9
4	Layer-by-layer assembled polyampholyte microgel films for simultaneous release of anionic and cationic molecules. <i>Langmuir</i> , 2010 , 26, 8187-94	4	38
3	Layer-by-layer assembled microgel films with high loading capacity: reversible loading and release of dyes and nanoparticles. <i>Langmuir</i> , 2008 , 24, 1902-9	4	62
2	Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 2008, 14, 1310-6	12.9	2208
1	Transient Chemical Activation of Covalent Bonds for Healing of Kinetically Stable and Multifunctional Organohydrogels. <i>CCS Chemistry</i> ,1-14	7.2	0