Kjeld MøllgÃ¥rd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5576183/publications.pdf

Version: 2024-02-01

		185998	189595	
51	2,692	28	50	
papers	citations	h-index	g-index	
53	53	53	3288	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	RRP7A links primary microcephaly to dysfunction of ribosome biogenesis, resorption of primary cilia, and neurogenesis. Nature Communications, 2020, 11, 5816.	5.8	34
2	Aquaporin 1 and the Na+/K+/2Clâ^ cotransporter 1 are present in the leptomeningeal vasculature of the adult rodent central nervous system. Fluids and Barriers of the CNS, 2020, 17, 15.	2.4	21
3	Neuroserpin expression during human brain development and in adult brain revealed by immunohistochemistry and single cell <scp>RNA</scp> sequencing. Journal of Anatomy, 2019, 235, 543-554.	0.9	28
4	Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of <scp>GFAP</scp> , S100, <scp>AQP</scp> 4 and <scp>YKL</scp> â€40. Journal of Anatomy, 2019, 235, 590-615.	0.9	37
5	PDGF-B Is Required for Development of the Glymphatic System. Cell Reports, 2019, 26, 2955-2969.e3.	2.9	89
6	Developmental differences in the expression of ABC transporters at rat brain barrier interfaces following chronic exposure to diallyl sulfide. Scientific Reports, 2019, 9, 5998.	1.6	18
7	Comparison of Cultured Human Cardiomyocyte Clusters Obtained from Embryos/Fetuses or Derived from Human Embryonic Stem Cells. Stem Cells and Development, 2019, 28, 608-619.	1.1	2
8	Recent Developments in Understanding Barrier Mechanisms in the Developing Brain: Drugs and Drug Transporters in Pregnancy, Susceptibility or Protection in the Fetal Brain?. Annual Review of Pharmacology and Toxicology, 2019, 59, 487-505.	4.2	33
9	The Origin of a New Progenitor Stem Cell Group in Human Development. Advances in Anatomy, Embryology and Cell Biology, 2019, 230, 1-70.	1.0	1
10	The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathologica, 2018, 135, 363-385.	3.9	154
11	Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. Journal of Physiology, 2018, 596, 5723-5756.	1.3	82
12	The E3 ubiquitin ligase SMURF1 regulates cell-fate specification and outflow tract septation during mammalian heart development. Scientific Reports, 2018, 8, 9542.	1.6	20
13	General Introduction to Barrier Mechanisms in the Central Nervous System., 2017,, 1-22.		1
14	Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Scientific Reports, 2017, 7, 11603.	1.6	57
15	Human Embryonic Stem Cell-Derived Cardiomyocytes Self-Arrange with Areas of Different Subtypes During Differentiation. Stem Cells and Development, 2017, 26, 1566-1577.	1.1	14
16	The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system?. F1000Research, 2016, 5, 313.	0.8	104
17	<scp>SSEA</scp> â€4 and <scp>YKL</scp> â€40 positive progenitor subtypes in the subventricular zone of developing human neocortex. Glia, 2016, 64, 90-104.	2.5	9
18	Reply: Methodological considerations in measuring different AMH splice forms using ELISA: validity of proAMH ELISA. Molecular Human Reproduction, 2016, 22, 374-375.	1.3	3

#	Article	IF	CITATIONS
19	The inner CSFââ,¬â€œbrain barrier: developmentally controlled access to the brain via intercellular junctions. Frontiers in Neuroscience, 2015, 9, 16.	1.4	92
20	Outer brain barriers in rat and human development. Frontiers in Neuroscience, 2015, 9, 75.	1.4	82
21	Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study. Frontiers in Neuroscience, 2015, 9, 123.	1.4	37
22	Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives?. Frontiers in Neuroscience, 2015, 9, 385.	1.4	237
23	ANGI-05CORRELATION BETWEEN VEGF AND YKL-40 TISSUE EXPRESSION AND PLASMA LEVELS IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v41.5-v42.	0.6	0
24	Proteolytic processing of anti-MÃ $\frac{1}{4}$ llerian hormone differs between human fetal testes and adult ovaries. Molecular Human Reproduction, 2015, 21, 571-582.	1.3	23
25	Cellular Specificity of the Blood–CSF Barrier for Albumin Transfer across the Choroid Plexus Epithelium. PLoS ONE, 2014, 9, e106592.	1.1	32
26	Epigenetic remodelling and dysregulation of DLGAP4 is linked with early-onset cerebellar ataxia. Human Molecular Genetics, 2014, 23, 6163-6176.	1.4	19
27	Brain Barriers and a Subpopulation of Astroglial Progenitors of Developing Human Forebrain Are Immunostained for the Glycoprotein YKL-40. Journal of Histochemistry and Cytochemistry, 2014, 62, 369-388.	1.3	15
28	The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Frontiers in Neuroscience, 2014, 8, 404.	1.4	179
29	Mechanisms That Determine the Internal Environment of the Developing Brain: A Transcriptomic, Functional and Ultrastructural Approach. PLoS ONE, 2013, 8, e65629.	1.1	65
30	YKL-40 Is Differentially Expressed in Human Embryonic Stem Cells and in Cell Progeny of the Three Germ Layers. Journal of Histochemistry and Cytochemistry, 2012, 60, 188-204.	1.3	36
31	Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach. PLoS ONE, 2012, 7, e33554.	1.1	61
32	Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge. Molecular Human Reproduction, 2010, 16, 621-631.	1.3	73
33	The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. Journal of Cell Science, 2009, 122, 3070-3082.	1.2	91
34	YKL-40 Protein Expression in the Early Developing Human Musculoskeletal System. Journal of Histochemistry and Cytochemistry, 2007, 55, 1213-1228.	1.3	86
35	In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. Journal of Neuroscience Research, 2007, 85, 250-259.	1.3	83
36	Ontogenetic development of diffusional restriction to protein at the pial surface of the rat brain: an electron microscopical study. Journal of Neurocytology, 1997, 26, 133-148.	1.6	28

#	Article	IF	CITATIONS
37	Development of spinal cord in the isolated CNS of a neonatal mammal (the opossumMonodelphis) Tj ETQq1 1 0.7	84314 rgE 1.6	BŢ∤Overloc
38	Onset of neocortical synaptogenesis in neonatalMonodelphis domestica(South American grey) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 7
39	Glial cell differentiation in neuron-free and neuron-rich regions. Anatomy and Embryology, 1991, 184, 549-558.	1.5	22
40	Glial cell differentiation in neuron-free and neuron-rich regions. Anatomy and Embryology, 1991, 184, 559-569.	1.5	25
41	The subcellular distribution of transferrin in rat choroid plexus studied with immunogold labelling of ultracryosections. The Histochemical Journal, 1989, 21, 441-448.	0.6	14
42	The developing neuroepithelium in human embryonic and fetal brain studied with vimentin-immunocytochemistry. Anatomy and Embryology, 1989, 180, 17-28.	1.5	64
43	Synthesis and localization of plasma proteins in the developing human brain. Developmental Biology, 1988, 128, 207-221.	0.9	121
44	Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: A CSF-brain barrier. Journal of Neurocytology, 1987, 16, 433-444.	1.6	88
45	THE DEVELOPMENT OF THE HUMAN BLOODâ€BRAIN AND BLOODâ€CSF BARRIERS. Neuropathology and Applied Neurobiology, 1986, 12, 337-358.	1.8	152
46	CSF-Brain permeability in the immature sheep fetus: A CSF-brain barrier. Developmental Brain Research, 1985, 18, 113-124.	2.1	58
47	Differential immunocytochemical staining for fetuin and transferrin in the developing cortical plate. Journal of Neurocytology, 1984, 13, 497-502.	1.6	45
48	Immunohistochemical identification of some plasma proteins in human embryonic and fetal forebrain with particular reference to the development of the neocortex. Developmental Brain Research, 1984, 13, 49-63.	2.1	58
49	INTRACELLULAR LOCALIZATION OF SOME PLASMA PROTEINS IN HUMAN EMBRYONIC AND FETAL BRAIN WITH SPECIAL REFERENCE TO THE DEVELOPING CEREBELLUM. Annals of the New York Academy of Sciences, 1983, 417, 330-343.	1.8	10
50	Intracellular plasma proteins in human fetal choroid plexus during development II. The distribution of prealbumin, albumin, alpha-fetoprotein, transferrin, IgG, IgA, IgM, and alpha1-antitrypsin. Developmental Brain Research, 1982, 3, 251-262.	2.1	37
51	Permeability of blood–cerebrospinal fluid barrier during foetal and perinatal life. Nature, 1976, 262, 156-156.	13.7	5