Janine N Post

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5576076/publications.pdf Version: 2024-02-01

IANINE N POST

#	Article	IF	CITATIONS
1	Implementing Computational Modeling in Tissue Engineering: Where Disciplines Meet. Tissue Engineering - Part A, 2022, 28, 542-554.	1.6	11
2	Protein Adsorption Enhances Energy Dissipation in Networks of Lysozyme Amyloid Fibrils. Langmuir, 2021, 37, 7349-7355.	1.6	4
3	Engineering Cartilage Tissue by Co-culturing of Chondrocytes and Mesenchymal Stromal Cells. Methods in Molecular Biology, 2021, 2221, 53-70.	0.4	2
4	Quantitative Molecular Models for Biological Processes: Modeling of Signal Transduction Networks with ANIMO. Methods in Molecular Biology, 2021, 2221, 141-161.	0.4	1
5	Using FRAP to Quantify Changes in Transcription Factor Dynamics After Cell Stimulation: Cell Culture, FRAP, Data Analysis, and Visualization. Methods in Molecular Biology, 2021, 2221, 109-139.	0.4	6
6	An ECHO of Cartilage: In Silico Prediction of Combinatorial Treatments to Switch Between Transient and Permanent Cartilage Phenotypes With Ex Vivo Validation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732917.	2.0	3
7	ECHO, the executable CHOndrocyte: A computational model to study articular chondrocytes in health and disease. Cellular Signalling, 2020, 68, 109471.	1.7	13
8	The Expressions of Dickkopf-Related Protein 1 and Frizzled-Related Protein Are Negatively Correlated to Local Inflammation and Osteoarthritis Severity. Cartilage, 2019, 12, 194760351984167.	1.4	13
9	Changes in Fluorescence Recovery After Photobleaching (FRAP) as an indicator of SOX9 transcription factor activity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 107-117.	0.9	10
10	Different response of human chondrocytes from healthy looking areas and damaged regions to IL1β stimulation under different oxygen tension. Journal of Orthopaedic Research, 2019, 37, 84-93.	1.2	6
11	Dickkopf-related protein 1 and gremlin 1 show different response than frizzled-related protein in human synovial fluid following knee injury and in patients with osteoarthritis. Osteoarthritis and Cartilage, 2018, 26, 834-843.	0.6	15
12	Co-treatment of TGF-β3 and BMP7 is superior in stimulating chondrocyte redifferentiation in both hypoxia and normoxia compared to single treatments. Scientific Reports, 2018, 8, 10251.	1.6	17
13	The Effects of the WNT-Signaling Modulators BIO and PKF118-310 on the Chondrogenic Differentiation of Human Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2018, 19, 561.	1.8	32
14	Oxygen-Dependent Lipid Profiles of Three-Dimensional Cultured Human Chondrocytes Revealed by MALDI-MSI. Analytical Chemistry, 2017, 89, 9438-9444.	3.2	16
15	High-Throughput Screening Assay Identifies Small Molecules Capable of Modulating the BMP-2 and TGF-1²1 Signaling Pathway. SLAS Discovery, 2017, 22, 40-50.	1.4	7
16	Nitric Oxide Mediates Crosstalk between Interleukin 1β and WNT Signaling in Primary Human Chondrocytes by Reducing DKK1 and FRZB Expression. International Journal of Molecular Sciences, 2017, 18, 2491.	1.8	28
17	Improving the Timed Automata Approach to Biological Pathway Dynamics. Lecture Notes in Computer Science, 2017, , 96-111.	1.0	0
18	Correlation between Gene Expression and Osteoarthritis Progression in Human. International Journal of Molecular Sciences, 2016, 17, 1126.	1.8	81

JANINE N POST

#	Article	IF	CITATIONS
19	Modelling with ANIMO: between fuzzy logic and differential equations. BMC Systems Biology, 2016, 10, 56.	3.0	21
20	Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots. Scientific Reports, 2016, 6, 26695.	1.6	5
21	Endogenous DKK1 and FRZB Regulate Chondrogenesis and Hypertrophy in Three-Dimensional Cultures of Human Chondrocytes and Human Mesenchymal Stem Cells. Stem Cells and Development, 2016, 25, 1808-1817.	1.1	31
22	A Qualitative Model of the Differentiation Network in Chondrocyte Maturation: A Holistic View of Chondrocyte Hypertrophy. PLoS ONE, 2016, 11, e0162052.	1.1	19
23	The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. International Journal of Molecular Sciences, 2015, 16, 19225-19247.	1.8	97
24	Differentiation of Mesenchymal Stem Cells under Hypoxia and Normoxia: Lipid Profiles Revealed by Time-of-Flight Secondary Ion Mass Spectrometry and Multivariate Analysis. Analytical Chemistry, 2015, 87, 3981-3988.	3.2	25
25	MicroRNA Levels as Prognostic Markers for the Differentiation Potential of Human Mesenchymal Stromal Cell Donors. Stem Cells and Development, 2015, 24, 1946-1955.	1.1	10
26	Engineering Cartilage Tissue by Pellet Coculture of Chondrocytes and Mesenchymal Stromal Cells. Methods in Molecular Biology, 2015, 1226, 31-41.	0.4	6
27	Distinct Effect of TCF4 on the NFκB Pathway in Human Primary Chondrocytes and the C20/A4 Chondrocyte Cell Line. Cartilage, 2014, 5, 181-189.	1.4	3
28	Biological networks 101: Computational modeling for molecular biologists. Gene, 2014, 533, 379-384.	1.0	21
29	Modeling Biological Pathway Dynamics With Timed Automata. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 832-839.	3.9	18
30	Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13954-13959.	3.3	104
31	WNT Signaling and Cartilage: Of Mice and Men. Calcified Tissue International, 2013, 92, 399-411.	1.5	49
32	GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Research and Therapy, 2013, 15, R126.	1.6	74
33	Assuring safety without animal testing: The case for the human testis in vitro. Reproductive Toxicology, 2013, 39, 63-68.	1.3	12
34	Gene expression profiling of dedifferentiated human articular chondrocytes inÂmonolayer culture. Osteoarthritis and Cartilage, 2013, 21, 599-603.	0.6	147
35	T Cell Factor 4 Is a Pro-catabolic and Apoptotic Factor in Human Articular Chondrocytes by Potentiating Nuclear Factor κB Signaling. Journal of Biological Chemistry, 2013, 288, 17552-17558.	1.6	58
36	Effect of radiation on the Notch signaling pathway in osteoblasts. International Journal of Molecular Medicine, 2013, 31, 698-706.	1.8	17

JANINE N POST

#	Article	IF	CITATIONS
37	Modelling biological pathway dynamics with Timed Automata. , 2012, , .		10
38	Nanomaterials for the Local and Targeted Delivery of Osteoarthritis Drugs. Journal of Nanomaterials, 2012, 2012, 1-13.	1.5	18
39	Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage. PLoS ONE, 2012, 7, e44561.	1.1	17
40	Trophic Effects of Mesenchymal Stem Cells Increase Chondrocyte Proliferation and Matrix Formation. Tissue Engineering - Part A, 2011, 17, 1425-1436.	1.6	259
41	Genome-wide screening in human growth plates during puberty in one patient suggests a role for RUNX2 in epiphyseal maturation. Journal of Endocrinology, 2011, 209, 245-254.	1.2	6
42	ERK Nuclear Translocation Is Dimerization-independent but Controlled by the Rate of Phosphorylation. Journal of Biological Chemistry, 2010, 285, 3092-3102.	1.6	92
43	Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab on A Chip, 2008, 8, 62-67.	3.1	144
44	Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular Probes for Light-Based Imaging Techniques. International Journal of Biomedical Imaging, 2007, 2007, 1-10.	3.0	105
45	Novel (Bio)chemical and (Photo)physical Probes for Imaging Living Cells. , 2005, , 99-118.		1
46	Novel Single Cell Fluorescence Approaches in the Investigation of Signaling at the Cellular Level. , 2005, , 33-70.		2
47	Developmentally regulated cytoplasmic retention of the transcription factor XMI-ER1 requires sequence in the acidic activation domain. International Journal of Biochemistry and Cell Biology, 2005, 37, 463-477.	1.2	3
48	One- and two-photon photoactivation of a paGFP-fusion protein in liveDrosophilaembryos. FEBS Letters, 2005, 579, 325-330.	1.3	76
49	Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction. Nature Biotechnology, 2004, 22, 198-203.	9.4	796
50	Dynamic and static fluorescence anisotropy in biological microscopy (rFLIM and emFRET). , 2004, , .		4
51	Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and) Tj ETQq1 1 0.7	784314 rgi 1.6	BT /Overlock
52	Nuclear localization signals in theXenopusFGF embryonic early response 1 protein. FEBS Letters, 2001, 502, 41-45.	1.3	11
53	Nuclear Translocation of a Xenopus laevis protein ER1 is regulated by multiple independent Nuclear Localization Signals. Biochemical Society Transactions, 2000, 28, A354-A354.	1.6	0

54 Computational Modeling of Complex Protein Activity Networks. , 0, , .

1

JANINE N POST

#	Article	IF	CITATIONS
55	NKX3.2 plays a key role in regulating HIF1α-directed angiogenesis in chondrocytes. Biotarget, 0, 2, 11-11.	0.5	1
56	Setting Parameters for Biological Models With ANIMO. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 145, 35-47.	0.8	9