Deborah K Schneiderman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5575734/publications.pdf

Version: 2024-02-01

21 papers 2,027 citations

394421 19 h-index 713466 21 g-index

22 all docs 22 docs citations

times ranked

22

2314 citing authors

#	Article	IF	CITATIONS
1	<i>>50th Anniversary Perspective</i> : There Is a Great Future in Sustainable Polymers. Macromolecules, 2017, 50, 3733-3749.	4.8	700
2	Aliphatic Polyester Block Polymer Design. Macromolecules, 2016, 49, 2419-2428.	4.8	200
3	Scalable production of mechanically tunable block polymers from sugar. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8357-8362.	7.1	159
4	Chemically Recyclable Biobased Polyurethanes. ACS Macro Letters, 2016, 5, 515-518.	4.8	143
5	Tough and Sustainable Graft Block Copolymer Thermoplastics. ACS Macro Letters, 2016, 5, 407-412.	4.8	94
6	Synthesis and Melt Processing of Sustainable Poly(Îμ-decalactone)- <i>block</i> -Poly(lactide) Multiblock Thermoplastic Elastomers. ACS Sustainable Chemistry and Engineering, 2014, 2, 2519-2526.	6.7	88
7	Toughening Glassy Poly(lactide) with Block Copolymer Micelles. ACS Macro Letters, 2016, 5, 359-364.	4.8	83
8	Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) copolymer elastomers. Polymer Chemistry, 2015, 6, 3641-3651.	3.9	78
9	Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects. Macromolecules, 2018, 51, 2466-2475.	4.8	71
10	Renewable, Degradable, and Chemically Recyclable Cross-Linked Elastomers. Industrial & Engineering Chemistry Research, 2016, 55, 11097-11106.	3.7	70
11	Design of Graft Block Polymer Thermoplastics. Macromolecules, 2016, 49, 9108-9118.	4.8	64
12	Open-to-Air RAFT Polymerization in Complex Solvents: From Whisky to Fermentation Broth. ACS Macro Letters, 2018, 7, 406-411.	4.8	48
13	Oligothiophene Tetracyanobutadienes: Alternative Donorâ´'Acceptor Architectures for Molecular and Polymeric Materials. Chemistry of Materials, 2011, 23, 823-831.	6.7	42
14	Printable, Degradable, and Biocompatible Ion Gels from a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid. ACS Macro Letters, 2017, 6, 1083-1088.	4.8	41
15	Sustainable Polymers in the Organic Chemistry Laboratory: Synthesis and Characterization of a Renewable Polymer from Î-Decalactone and <scp>l</scp> -Lactide. Journal of Chemical Education, 2014, 91, 131-135.	2.3	37
16	Polymer Day: Outreach Experiments for High School Students. Journal of Chemical Education, 2017, 94, 1629-1638.	2.3	31
17	Optically Active β-Methyl-δ-Valerolactone: Biosynthesis and Polymerization. ACS Sustainable Chemistry and Engineering, 2016, 4, 4396-4402.	6.7	21
18	Branched Diol Monomers from the Sequential Hydrogenation of Renewable Carboxylic Acids. ChemCatChem, 2016, 8, 3031-3035.	3.7	21

#	Article	IF	CITATIONS
19	Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry. Journal of Chemical Education, 2017, 94, 1761-1765.	2.3	19
20	Filler-Reinforced Elastomers Based on Functional Polyolefin Prepolymers. Industrial & Engineering Chemistry Research, 2016, 55, 6106-6112.	3.7	11
21	Synthesis and Study of Sustainable Polymers in the Organic Chemistry Laboratory: An Inquiry-Based Experiment Exploring the Effects of Size and Composition on the Properties of Renewable Block Polymers. ACS Symposium Series, 2016, , 123-147.	0.5	6