A Amine Benzerga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5575502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Failure of metals I: Brittle and ductile fracture. Acta Materialia, 2016, 107, 424-483.	3.8	730
2	Ductile Fracture by Void Growth to Coalescence. Advances in Applied Mechanics, 2010, 44, 169-305.	1.4	491
3	Plastic potentials for anisotropic porous solids. European Journal of Mechanics, A/Solids, 2001, 20, 397-434.	2.1	288
4	Anisotropic ductile fracture. Acta Materialia, 2004, 52, 4623-4638.	3.8	230
5	Anisotropic ductile fracture. Acta Materialia, 2004, 52, 4639-4650.	3.8	225
6	Ductile failure modeling. International Journal of Fracture, 2016, 201, 29-80.	1.1	181
7	A constitutive model for plastically anisotropic solids with non-spherical voids. Journal of the Mechanics and Physics of Solids, 2010, 58, 874-901.	2.3	167
8	Failure of metals III: Fracture and fatigue of nanostructured metallic materials. Acta Materialia, 2016, 107, 508-544.	3.8	153
9	Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 159-196.	0.8	150
10	Coalescence-Controlled Anisotropic Ductile Fracture. Journal of Engineering Materials and Technology, Transactions of the ASME, 1999, 121, 221-229.	0.8	143
11	Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy AZ31. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3292-3307.	1.1	119
12	The stored energy of cold work: Predictions from discrete dislocation plasticity. Acta Materialia, 2005, 53, 4765-4779.	3.8	101
13	On the path-dependence of the fracture locus in ductile materials – Analysis. International Journal of Plasticity, 2012, 37, 157-170.	4.1	100
14	Power-Law Creep from Discrete Dislocation Dynamics. Physical Review Letters, 2012, 109, 265504.	2.9	95
15	Size effects under homogeneous deformation of single crystals: A discrete dislocation analysisâ~†. Journal of the Mechanics and Physics of Solids, 2008, 56, 132-156.	2.3	94
16	Effective Yield Criterion Accounting for Microvoid Coalescence. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	88
17	Work hardening in micropillar compression: In situ experiments and modeling. Acta Materialia, 2011, 59, 3825-3840.	3.8	86
18	Scale dependence of mechanical properties of single crystals under uniform deformation. Scripta Materialia, 2006, 54, 1937-1941.	2.6	84

#	Article	IF	CITATIONS
19	Effect of strain rate and temperature on fracture of magnesium alloy AZ31B. Acta Materialia, 2016, 112, 194-208.	3.8	84
20	Void growth and coalescence in anisotropic plastic solids. International Journal of Solids and Structures, 2011, 48, 1696-1710.	1.3	81
21	Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain. Modelling and Simulation in Materials Science and Engineering, 2002, 10, 73-102.	0.8	71
22	An analysis of exhaustion hardening in micron-scale plasticity. International Journal of Plasticity, 2008, 24, 1128-1157.	4.1	71
23	Finite-strain elasto-viscoplastic behavior of an epoxy resin: Experiments and modeling in the glassy regime. International Journal of Plasticity, 2014, 62, 138-161.	4.1	67
24	Micro-pillar plasticity: 2.5D mesoscopic simulations. Journal of the Mechanics and Physics of Solids, 2009, 57, 1459-1469.	2.3	56
25	A mechanism of failure in shear bands. Extreme Mechanics Letters, 2018, 23, 67-71.	2.0	56
26	On the path-dependence of the fracture locus in ductile materials: Experiments. International Journal of Solids and Structures, 2015, 71, 79-90.	1.3	54
27	Coalescence of voids by internal necking: Theoretical estimates and numerical results. Journal of the Mechanics and Physics of Solids, 2015, 75, 140-158.	2.3	52
28	On Void Coalescence Under Combined Tension and Shear. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	52
29	Effect of UV-aging on the mechanical and fracture behavior of low density polyethylene. Polymer Degradation and Stability, 2020, 180, 109185.	2.7	51
30	Effects of Manufacturing-Induced Voids on Local Failure in Polymer-Based Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 2008, 130, .	0.8	50
31	Interplay between the effects of deformation mechanisms and dynamic recrystallization on the failure of Mg-3Al-1Zn. Acta Materialia, 2019, 168, 448-472.	3.8	49
32	Void growth and coalescence in hexagonal close packed crystals. Journal of the Mechanics and Physics of Solids, 2019, 125, 198-224.	2.3	46
33	Three dimensional simulations of texture and triaxiality effects on the plasticity of magnesium alloys. Acta Materialia, 2017, 127, 54-72.	3.8	45
34	An approximate yield criterion for anisotropic porous media. Comptes Rendus - Mecanique, 2008, 336, 685-692.	2.1	43
35	High-temperature discrete dislocation plasticity. Journal of the Mechanics and Physics of Solids, 2015, 82, 1-22.	2.3	42
36	Evolution of the 3D plastic anisotropy of HCP metals: Experiments and modeling. International Journal of Plasticity, 2019, 117, 71-92.	4.1	41

#	Article	IF	CITATIONS
37	On plastic flow in notched hexagonal close packed single crystals. Journal of the Mechanics and Physics of Solids, 2016, 94, 273-297.	2.3	40
38	Towards designing anisotropy for ductility enhancement: A theory-driven investigation in Mg-alloys. Acta Materialia, 2017, 131, 349-362.	3.8	40
39	Modeling damage accumulation to fracture in a magnesium-rare earth alloy. Acta Materialia, 2017, 124, 225-236.	3.8	40
40	Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings. International Journal of Plasticity, 2017, 91, 160-181.	4.1	38
41	Smaller is softer: an inverse size effect in a cast aluminum alloy. Acta Materialia, 2001, 49, 3071-3083.	3.8	37
42	Determination of the intrinsic behavior of polymers using digital image correlation combined with video-monitored testing. International Journal of Solids and Structures, 2013, 50, 1869-1878.	1.3	37
43	On the notch ductility of a magnesium-rare earth alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 647, 74-83.	2.6	37
44	On fracture loci of ductile materials under non-proportional loading. International Journal of Mechanical Sciences, 2016, 117, 135-151.	3.6	35
45	Size Effects in the Charpy V-Notch Test. International Journal of Fracture, 2002, 116, 275-296.	1.1	33
46	Fracture Strains, Damage Mechanisms and Anisotropy in a Magnesium Alloy Across a Range of Stress Triaxialities. Experimental Mechanics, 2014, 54, 493-499.	1.1	33
47	Size effects in aluminium alloy castings. Acta Materialia, 2010, 58, 3006-3013.	3.8	31
48	Void growth and coalescence in a magnesium alloy studied by synchrotron radiation laminography. Acta Materialia, 2018, 155, 80-94.	3.8	31
49	A unified criterion for the growth and coalescence of microvoids. Journal of the Mechanics and Physics of Solids, 2016, 97, 19-36.	2.3	30
50	Creep crack growth by grain boundary cavitation under monotonic and cyclic loading. Journal of the Mechanics and Physics of Solids, 2017, 108, 68-84.	2.3	27
51	Plastic flow anisotropy drives shear fracture. Scientific Reports, 2019, 9, 1425.	1.6	26
52	Environmentally enhanced creep crack growth by grain boundary cavitation under cyclic loading. Acta Materialia, 2018, 153, 136-146.	3.8	25
53	Microstructural Origin of Residual Stress Relief in Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5038-5055.	1.1	25
54	An analysis of Lode effects in ductile failure. Journal of the Mechanics and Physics of Solids, 2021, 153, 104468.	2.3	25

4

#	Article	IF	CITATIONS
55	Discrete dislocation simulations of compression of tapered micropillars. Journal of the Mechanics and Physics of Solids, 2017, 101, 223-234.	2.3	23
56	A discrete dislocation analysis of the Bauschinger effect in microcrystals. Acta Materialia, 2008, 56, 5477-5491.	3.8	22
57	On the modeling of asymmetric yield functions. International Journal of Solids and Structures, 2016, 80, 486-500.	1.3	21
58	Discrete shear-transformation-zone plasticity modeling of notched bars. Journal of the Mechanics and Physics of Solids, 2018, 111, 18-42.	2.3	20
59	An analysis of impact-induced deformation and fracture modes in amorphous glassy polymers. Engineering Fracture Mechanics, 2008, 75, 3328-3342.	2.0	19
60	A phenomenological model of size-dependent hardening in crystal plasticity. Philosophical Magazine, 2008, 88, 3585-3601.	0.7	19
61	On the localization of plastic flow in glassy polymers. European Journal of Mechanics, A/Solids, 2013, 39, 251-267.	2.1	19
62	Finite element implementation of a macromolecular viscoplastic polymer model. International Journal for Numerical Methods in Engineering, 2013, 94, 895-919.	1.5	19
63	A computational framework for analyzing the dynamic response of glassy polymers. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 4485-4502.	3.4	18
64	A micromechanical model for the dynamic behavior of porous media in the void coalescence stage. International Journal of Solids and Structures, 2015, 71, 1-18.	1.3	17
65	Ductile failure as a constitutive instability in porous plastic solids. Journal of the Mechanics and Physics of Solids, 2020, 139, 103917.	2.3	15
66	Constitutive relations and their time integration for anisotropic elasto-plastic porous materials. Computer Methods in Applied Mechanics and Engineering, 2016, 310, 495-534.	3.4	14
67	Energy dissipation rate and kinetic relations for Eshelby transformations. Journal of the Mechanics and Physics of Solids, 2020, 136, 103699.	2.3	14
68	A discrete dislocation analysis of strengthening in bilayer thin films. Modelling and Simulation in Materials Science and Engineering, 2007, 15, S239-S254.	0.8	12
69	Photo-oxidation of semicrystalline polymers: Damage nucleation versus growth. Polymer, 2020, 188, 122090.	1.8	11
70	Numerical assessment of an anisotropic porous metal plasticity model. Mechanics of Materials, 2015, 90, 212-228.	1.7	10
71	Orientation-dependent plastic deformation in transformer steel: Experiments and dislocation dynamics simulations. Acta Materialia, 2015, 84, 256-264.	3.8	9
72	Discrete shear transformation zone plasticity. Extreme Mechanics Letters, 2016, 9, 21-29.	2.0	9

#	Article	IF	CITATIONS
73	Computational Methodology for Modeling Fracture in Fiber-Reinforced Polymer Composites. Journal of Aerospace Engineering, 2009, 22, 296-303.	0.8	8
74	Ductile Fracture in Plane Stress. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	8
75	Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 557-559.	0.8	7
76	A variational fast Fourier transform method for phase-transforming materials. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 045001.	0.8	6
77	On the micromechanics of void mediated failure in HCP crystals. Journal of the Mechanics and Physics of Solids, 2022, 165, 104923.	2.3	6
78	Material inertia and size effects in the Charpy V-notch test. European Journal of Mechanics, A/Solids, 2004, 23, 373-386.	2.1	5
79	An analysis of deformation and failure in rectangular tensile bars accounting for void shape changes. International Journal of Fracture, 2021, 230, 133-156.	1.1	5
80	Micromechanics-based constitutive relations for post-localization analysis. MethodsX, 2018, 5, 1431-1439.	0.7	4
81	Limits on Transformation Strains for Non-Negative Dissipation. Journal of Applied Mechanics, Transactions ASME, 2019, 86, 051005.	1.1	4
82	Shear Transformation Zone (STZ) plasticity analysis of constrained shear. Mechanics of Materials, 2021, 160, 103935.	1.7	3
83	On the effects of dislocation density on micropillar strength. Materials Research Society Symposia Proceedings, 2009, 1185, 61.	0.1	2
84	Evolution of geometrically necessary dislocation density from computational dislocation dynamics. IOP Conference Series: Materials Science and Engineering, 2009, 3, 012008.	0.3	2
85	Analysis of shape memory alloy sensory particles for damage detection via substructure and continuum damage modeling. Proceedings of SPIE, 2016, , .	0.8	2
86	Strain Localization in Determining the Constitutive Response of Polymers. , 2016, , .		1
87	Modeling the 3D Plastic Anisotropy of a Magnesium Alloy Processed Using Severe Plastic Deformation. Minerals, Metals and Materials Series, 2019, , 283-287.	0.3	1
88	A Theory for Designing Ductile Materials with Anisotropy. Minerals, Metals and Materials Series, 2019, , 359-362.	0.3	1
89	Micromechanical Models of Ductile Damage and Fracture. , 2015, , 939-962.		1
90	A Predictive Multisurface Approach to Damage Modeling in Mg Alloys. Minerals, Metals and Materials Series, 2022, , 293-297.	0.3	1

6

#	Article	IF	CITATIONS
91	A Computational Framework for Analyzing the Dynamic Behavior and Failure of Amorphous Polymers. , 2008, , .		0
92	Prediction of Impact-Induced Damage Accumulation in a Composite Using a Macromolecular Polymer Model. , 2009, , .		0
93	Micromechanical Models of Ductile Damage and Fracture. , 2013, , 1-22.		0
94	Ductility Enhancement in Mg Alloys by Anisotropy Engineering. Minerals, Metals and Materials Series, 2017, , 153-158.	0.3	0
95	Discrete Dislocation Predictions for Single Crystal Hardening: Tension VS Bending. Solid Mechanics and Its Applications, 2004, , 235-242.	0.1	0
96	A Computational Methodology for Modeling Ductile Fracture. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2008, , 67-77.	0.1	0