Seongyool Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5574035/publications.pdf

Version: 2024-02-01

28 697 13 h-index

28 28 28 780
all docs docs citations times ranked citing authors

25

g-index

#	Article	IF	CITATIONS
1	Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks. Experimental Thermal and Fluid Science, 2013, 47, 232-240.	2.7	110
2	Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Applied Energy, 2013, 105, 207-216.	10.1	100
3	Thermochemical and combustion behaviors of coals of different ranks and their blends for pulverized-coal combustion. Applied Thermal Engineering, 2013, 54, 111-119.	6.0	94
4	The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition. Biomass and Bioenergy, 2014, 71, 144-154.	5.7	68
5	Application of refuse fuels in a direct carbon fuel cell system. Energy, 2013, 51, 447-456.	8.8	61
6	Numerical investigation of effects of CO 2 recirculation in an oxy-fuel IGCC on gasification characteristics of a two-stage entrained flow coal gasifier. Energy, 2017, 118, 181-189.	8.8	32
7	Numerical analysis of particle dispersion and combustion characteristics on a piloted coaxial pulverized coal jet flame. Applied Thermal Engineering, 2017, 124, 1194-1202.	6.0	32
8	Optical non-intrusive measurements of internal recirculation zone of pulverized coal swirling flames with secondary swirl intensity. Energy, 2016, 103, 61-74.	8.8	28
9	Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon) Tj ETQq1	l 0.784314 8.8	rgBT /Overlo
10	The characteristics of NO production mechanism on flue gas recirculation in oxy-firing condition. Applied Thermal Engineering, 2011, 31, 1163-1171.	6.0	26
11	Experimental and numerical investigation of effects of particle shape and size distribution on particles' dispersion in a coaxial jet flow. Advanced Powder Technology, 2018, 29, 2322-2330.	4.1	23
12	Comparison of the Electrochemical Reaction Parameter of Graphite and Sub-bituminous Coal in a Direct Carbon Fuel Cell. Energy & Samp; Fuels, 2016, 30, 3502-3508.	5.1	17
13	Experimental and numerical analysis of turbulent pulverized coal flame in a coaxial burner. Energy, 2019, 179, 727-735.	8.8	15
14	Numerical Investigation on the Detailed Structure of a Coaxial Coal Jet Flame Using Large-Eddy Simulation with Elementary Reactions. Energy & Energy & 2019, 33, 4621-4631.	5.1	13
15	Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate. Journal of Power Sources, 2017, 372, 54-63.	7.8	10
16	Correlations between electrochemical resistances and surface properties of acid-treated fuel in coal fuel cells. Energy, 2017, 140, 885-892.	8.8	9
17	Spraying and Mixing Characteristics of Urea in a Static Mixer Applied Marine SCR System. Energies, 2021, 14, 5788.	3.1	9
18	Effect of thermal decomposition products of coal on anodic reactions in direct carbon fuel cells. Journal of Mechanical Science and Technology, 2014, 28, 3807-3812.	1.5	4

#	Article	IF	CITATIONS
19	Experimental study on interaction and excess heat release under oxy-fuel combustion of blended coals. Korean Journal of Chemical Engineering, 2013, 30, 337-344.	2.7	3
20	Numerical investigation of reaction kinetics of coal volatiles with a detailed chemistry and its simplification. Journal of Thermal Science and Technology, 2016, 11, JTST0014-JTST0014.	1.1	3
21	Effect of devolatilization model on flame structure of pulverized coal combustion in a jet-burner system. Journal of Mechanical Science and Technology, 2019, 33, 1973-1979.	1.5	3
22	Effect of Fuel Acid Treatment on the Reduction of Electrochemical Resistance in a Direct Carbon Fuel Cell System. Energy & Energy	5.1	3
23	Electrochemical conversion of CO2 using different electrode materials in an Li–K molten salt system. Energy, 2022, 245, 123162.	8.8	3
24	Evaporator Optimization of Refrigerator Systems Using Quality Analysis. Energies, 2021, 14, 555.	3.1	2
25	Large eddy simulation of two-phase reacting turbulent flow in a pilot-scale pulverized coal combustion furnace with flamelet model. Journal of Mechanical Science and Technology, 2021, 35, 2209-2218.	1.5	2
26	A Comparative Study on Electrochemical Impedance Analysis of Solid Carbon Fuels in Direct Carbon Fuel Cell. Transactions of the Korean Hydrogen and New Energy Society, 2014, 25, 620-628.	0.6	0
27	Electrochemical Resistance Reduction by Acid Treatment of Coal in Direct Carbon Fuel Cell. , 0, , .		0
28	Modeling Differential Pressure of Diesel Particulate Filters in Marine Engines. Energies, 2022, 15, 3803.	3.1	0