Abigail G Doyle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5573906/publications.pdf

Version: 2024-02-01

81351 28736 13,324 73 57 76 citations g-index h-index papers 116 116 116 10419 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A biohybrid strategy for enabling photoredox catalysis with low-energy light. CheM, 2022, 8, 174-185.	5.8	26
2	Using Data Science To Guide Aryl Bromide Substrate Scope Analysis in a Ni/Photoredox-Catalyzed Cross-Coupling with Acetals as Alcohol-Derived Radical Sources. Journal of the American Chemical Society, 2022, 144, 1045-1055.	6.6	74
3	Auto-QChem: an automated workflow for the generation and storage of DFT calculations for organic molecules. Reaction Chemistry and Engineering, 2022, 7, 1276-1284.	1.9	16
4	Oxidative Addition of Aryl Halides to a Ni(I)-Bipyridine Complex. Journal of the American Chemical Society, 2022, 144, 5575-5582.	6.6	60
5	Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing. Accounts of Chemical Research, 2022, 55, 1423-1434.	7.6	18
6	Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp ³)–H Cross-Coupling. Accounts of Chemical Research, 2021, 54, 988-1000.	7.6	144
7	Bayesian reaction optimization as a tool for chemical synthesis. Nature, 2021, 590, 89-96.	13.7	370
8	Predicting Reaction Yields via Supervised Learning. Accounts of Chemical Research, 2021, 54, 1856-1865.	7.6	72
9	Automation and computer-assisted planning for chemical synthesis. Nature Reviews Methods Primers, 2021, 1 , .	11.8	83
10	Ni/Photoredox-Catalyzed Enantioselective Cross-Electrophile Coupling of Styrene Oxides with Aryl lodides. Journal of the American Chemical Society, 2021, 143, 15873-15881.	6.6	83
11	The Evolution of Data-Driven Modeling in Organic Chemistry. ACS Central Science, 2021, 7, 1622-1637.	5.3	58
12	Phosphine/Photoredox Catalyzed Anti-Markovnikov Hydroamination of Olefins with Primary Sulfonamides via α-Scission from Phosphoranyl Radicals. Journal of the American Chemical Society, 2021, 143, 18331-18338.	6.6	47
13	Univariate classification of phosphine ligation state and reactivity in cross-coupling catalysis. Science, 2021, 374, 301-308.	6.0	97
14	The Open Reaction Database. Journal of the American Chemical Society, 2021, 143, 18820-18826.	6.6	112
15	A general strategy for C(sp3)–H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor. Nature Communications, 2021, 12, 6950.	5.8	54
16	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	23.3	136
17	Regioselective Cross-Electrophile Coupling of Epoxides and (Hetero)aryl lodides via Ni/Ti/Photoredox Catalysis. ACS Catalysis, 2020, 10, 5821-5827.	5.5	64
18	Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 9493-9500.	6.6	110

#	Article	IF	CITATIONS
19	³ d-d Excited States of Ni(II) Complexes Relevant to Photoredox Catalysis: Spectroscopic Identification and Mechanistic Implications. Journal of the American Chemical Society, 2020, 142, 5800-5810.	6.6	168
20	Synthesis of \hat{I}^2 -Phenethylamines via Ni/Photoredox Cross-Electrophile Coupling of Aliphatic Aziridines and Aryl Iodides. Journal of the American Chemical Society, 2020, 142, 7598-7605.	6.6	71
21	Role of Electron-Deficient Olefin Ligands in a Ni-Catalyzed Aziridine Cross-Coupling To Generate Quaternary Carbons. Journal of the American Chemical Society, 2020, 142, 8928-8937.	6.6	32
22	Nickel/Photoredox-Catalyzed Methylation of (Hetero)aryl Chlorides Using Trimethyl Orthoformate as a Methyl Radical Source. Journal of the American Chemical Society, 2020, 142, 7683-7689.	6.6	95
23	Direct Use of Carboxylic Acids in the Photocatalytic Hydroacylation of Styrenes To Generate Dialkyl Ketones. Organic Letters, 2019, 21, 9940-9944.	2.4	59
24	Long-Lived Charge-Transfer States of Nickel(II) Aryl Halide Complexes Facilitate Bimolecular Photoinduced Electron Transfer. Journal of the American Chemical Society, 2018, 140, 3035-3039.	6.6	219
25	Predicting reaction performance in C–N cross-coupling using machine learning. Science, 2018, 360, 186-190.	6.0	613
26	Ni-Catalyzed Carbon–Carbon Bond-Forming Reductive Amination. Journal of the American Chemical Society, 2018, 140, 2292-2300.	6.6	81
27	Deoxyfluorination with Sulfonyl Fluorides: Navigating Reaction Space with Machine Learning. Journal of the American Chemical Society, 2018, 140, 5004-5008.	6.6	181
28	Response to Comment on "Predicting reaction performance in C–N cross-coupling using machine learning― Science, 2018, 362, .	6.0	49
29	Direct C–C Bond Formation from Alkanes Using Ni-Photoredox Catalysis. Journal of the American Chemical Society, 2018, 140, 14059-14063.	6.6	182
30	Generation of Phosphoranyl Radicals via Photoredox Catalysis Enables Voltage–Independent Activation of Strong C–O Bonds. ACS Catalysis, 2018, 8, 11134-11139.	5 . 5	211
31	Dual Nickel- and Photoredox-Catalyzed Enantioselective Desymmetrization of Cyclic meso -Anhydrides. Angewandte Chemie, 2017, 129, 3733-3737.	1.6	20
32	Dual Nickel―and Photoredoxâ€Catalyzed Enantioselective Desymmetrization of Cyclic <i>meso</i> â€Anhydrides. Angewandte Chemie - International Edition, 2017, 56, 3679-3683.	7.2	99
33	Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects. Nature Chemistry, 2017, 9, 779-784.	6.6	183
34	Nickel-Catalyzed Enantioselective Reductive Cross-Coupling of Styrenyl Aziridines. Journal of the American Chemical Society, 2017, 139, 5688-5691.	6.6	214
35	Mild, Redoxâ€Neutral Formylation of Aryl Chlorides through the Photocatalytic Generation of Chlorine Radicals. Angewandte Chemie - International Edition, 2017, 56, 7191-7194.	7.2	165
36	Mild, Redoxâ€Neutral Formylation of Aryl Chlorides through the Photocatalytic Generation of Chlorine Radicals. Angewandte Chemie, 2017, 129, 7297-7300.	1.6	46

#	Article	IF	CITATIONS
37	Direct Acylation of C(sp ³)â^'H Bonds Enabled by Nickel and Photoredox Catalysis. Angewandte Chemie, 2016, 128, 4108-4111.	1.6	57
38	Direct Acylation of C(sp ³)â^'H Bonds Enabled by Nickel and Photoredox Catalysis. Angewandte Chemie - International Edition, 2016, 55, 4040-4043.	7.2	204
39	Nucleophilic (Radio)Fluorination of α-Diazocarbonyl Compounds Enabled by Copper-Catalyzed H–F Insertion. Journal of the American Chemical Society, 2016, 138, 10802-10805.	6.6	59
40	C–H functionalization of amines with aryl halides by nickel-photoredox catalysis. Chemical Science, 2016, 7, 7002-7006.	3.7	141
41	Direct C(sp ³)–H Cross Coupling Enabled by Catalytic Generation of Chlorine Radicals. Journal of the American Chemical Society, 2016, 138, 12719-12722.	6.6	505
42	Nickel-catalyzed enantioselective arylation of pyridine. Chemical Science, 2016, 7, 4105-4109.	3.7	72
43	Dialkyl Ether Formation by Nickelâ€Catalyzed Crossâ€Coupling of Acetals and Aryl Iodides. Angewandte Chemie - International Edition, 2015, 54, 9876-9880.	7.2	138
44	PyFluor: A Low-Cost, Stable, and Selective Deoxyfluorination Reagent. Journal of the American Chemical Society, 2015, 137, 9571-9574.	6.6	222
45	A Modular, Air-Stable Nickel Precatalyst. Organic Letters, 2015, 17, 2166-2169.	2.4	115
46	Electron-Deficient Olefin Ligands Enable Generation of Quaternary Carbons by Ni-Catalyzed Cross-Coupling. Journal of the American Chemical Society, 2015, 137, 5638-5641.	6.6	110
47	The Chemistry of Transition Metals with Three-Membered Ring Heterocycles. Chemical Reviews, 2014, 114, 8153-8198.	23.0	416
48	Mechanistic Investigations of Palladium-Catalyzed Allylic Fluorination. Organometallics, 2014, 33, 2121-2133.	1.1	63
49	Enantioselective, Nickel-Catalyzed Suzuki Cross-Coupling of Quinolinium Ions. Organic Letters, 2014, 16, 142-145.	2.4	71
50	Enantioselective Radiosynthesis of Positron Emission Tomography (PET) Tracers Containing [¹⁸ F]Fluorohydrins. Journal of the American Chemical Society, 2014, 136, 5291-5294.	6.6	85
51	Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp ³ -carbons with aryl halides. Science, 2014, 345, 437-440.	6.0	1,309
52	Nickelâ€Catalyzed Enantioselective Arylation of Pyridinium Ions: Harnessing an Iminium Ion Activation Mode. Angewandte Chemie - International Edition, 2013, 52, 9153-9156.	7.2	77
53	Directed Nickel-Catalyzed Negishi Cross Coupling of Alkyl Aziridines. Journal of the American Chemical Society, 2013, 135, 13605-13609.	6.6	95
54	Palladium-Catalyzed Allylic C–H Fluorination. Journal of the American Chemical Society, 2013, 135, 12990-12993.	6.6	188

#	Article	IF	CITATIONS
55	Carbofluorination via a palladium-catalyzed cascade reaction. Chemical Science, 2013, 4, 1216.	3.7	83
56	Enantioselective fluoride ring opening of aziridines enabled by cooperative Lewis acid catalysis. Tetrahedron, 2013, 69, 5702-5709.	1.0	95
57	Synthesis of \hat{l}^2 -Fluoroamines by Lewis Base Catalyzed Hydrofluorination of Aziridines. Journal of Organic Chemistry, 2012, 77, 4177-4183.	1.7	94
58	Mechanistic Investigation of the Nickel-Catalyzed Suzuki Reaction of $\langle i \rangle N \langle i \rangle, \langle i \rangle O \langle i \rangle$ -Acetals: Evidence for Boronic Acid Assisted Oxidative Addition and an Iminium Activation Pathway. Journal of the American Chemical Society, 2012, 134, 16967-16970.	6.6	66
59	Nickel-Catalyzed Cross-Coupling of Chromene Acetals and Boronic Acids. Organic Letters, 2012, 14, 1616-1619.	2.4	79
60	Nickel-Catalyzed Negishi Alkylations of Styrenyl Aziridines. Journal of the American Chemical Society, 2012, 134, 9541-9544.	6.6	172
61	Transition metal-catalyzed cross coupling with N-acyliminium ions derived from quinolines and isoquinolines. Chemical Science, 2011, 2, 980-984.	3.7	61
62	Mechanistic Investigations of Cooperative Catalysis in the Enantioselective Fluorination of Epoxides. Journal of the American Chemical Society, 2011, 133, 16001-16012.	6.6	145
63	Palladium-Catalyzed Regio- and Enantioselective Fluorination of Acyclic Allylic Halides. Journal of the American Chemical Society, 2011, 133, 15902-15905.	6.6	174
64	Nickelâ€Catalyzed Crossâ€Coupling of Styrenyl Epoxides with Boronic Acids. Angewandte Chemie - International Edition, 2011, 50, 6056-6059.	7.2	113
65	Enantioselective Ring Opening of Epoxides by Fluoride Anion Promoted by a Cooperative Dual-Catalyst System. Journal of the American Chemical Society, 2010, 132, 3268-3269.	6.6	255
66	Palladium-Catalyzed Asymmetric Synthesis of Allylic Fluorides. Journal of the American Chemical Society, 2010, 132, 17402-17404.	6.6	192
67	Enantioselective Thiourea-Catalyzed Additions to Oxocarbenium Ions. Journal of the American Chemical Society, 2008, 130, 7198-7199.	6.6	423
68	Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chemical Reviews, 2007, 107, 5713-5743.	23.0	2,323
69	Enantioselective Alkylation of Acyclic $\hat{l}\pm,\hat{l}\pm$ -Disubstituted Tributyltin Enolates Catalyzed by a {Cr(salen)} Complex. Angewandte Chemie - International Edition, 2007, 46, 3701-3705.	7.2	107
70	Enantioselective Alkylations of Tributyltin Enolates Catalyzed by Cr(salen)Cl: Access to Enantiomerically Enriched All-Carbon Quaternary Centers ChemInform, 2005, 36, no.	0.1	0
71	Enantioselective Alkylations of Tributyltin Enolates Catalyzed by Cr(salen)Cl:Â Access to Enantiomerically Enriched All-Carbon Quaternary Centers. Journal of the American Chemical Society, 2005, 127, 62-63.	6.6	129
72	C-Arylglucoside synthesis: triisopropylsilane as a selective reagent for the reduction of an anomeric C-phenyl ketal. Tetrahedron: Asymmetry, 2003, 14, 3243-3247.	1.8	42

#	Article	IF	CITATIONS
73	A Synthetically Useful, Self-Assembling MMO Mimic System for Catalytic Alkene Epoxidation with Aqueous H2O2. Journal of the American Chemical Society, 2001, 123, 7194-7195.	6.6	456