Robert H Crabtree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5573312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Surface Loading of the Silatrane Anchoring Group on TiO ₂ . ACS Applied Materials & Interfaces, 2022, 14, 6582-6589.	8.0	7
2	<i>Operando</i> Structure–Activity–Stability Relationship of Iridium Oxides during the Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 5174-5184.	11.2	40
3	Electrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex. Journal of the American Chemical Society, 2022, 144, 8449-8453.	13.7	31
4	Malcolm L. H. Green. 16 April 1936 — 24 July 2020. Biographical Memoirs of Fellows of the Royal Society, 2021, 70, 175-188.	0.1	0
5	Electronic and Spin-State Effects on Dinitrogen Splitting to Nitrides in a Rhenium Pincer System. Inorganic Chemistry, 2021, 60, 6115-6124.	4.0	12
6	Distorted Copper(II) Complex with Unusually Short CF···Cu Distances. Inorganic Chemistry, 2021, 60, 14759-14764.	4.0	1
7	Accessing Molecular Dimeric Ir Water Oxidation Catalysts from Coordination Precursors. Inorganic Chemistry, 2021, 60, 14349-14356.	4.0	12
8	Organometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolution. Inorganica Chimica Acta, 2021, 526, 120507.	2.4	2
9	Concerted proton-electron transfer oxidation of phenols and hydrocarbons by a high-valent nickel complex. Chemical Science, 2020, 11, 1683-1690.	7.4	14
10	Alternate Strategies for Solar Fuels from Carbon Dioxide. ACS Energy Letters, 2020, 5, 2505-2507.	17.4	8
11	Diazo coupling for surface attachment of small molecules to TiO ₂ nanoparticles. Chemical Communications, 2020, 56, 9340-9343.	4.1	5
12	Surface-Attached Molecular Catalysts on Visible-Light-Absorbing Semiconductors: Opportunities and Challenges for a Stable Hybrid Water-Splitting Photoanode. ACS Energy Letters, 2020, 5, 3195-3202.	17.4	31
13	Surprisingly big linker-dependence of activity and selectivity in CO ₂ reduction by an iridium(<scp>i</scp>) pincer complex. Chemical Communications, 2020, 56, 9126-9129.	4.1	10
14	Silatrane Anchors for Metal Oxide Surfaces: Optimization for Potential Photocatalytic and Electrocatalytic Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 5602-5609.	8.0	28
15	Transfer Hydrogenation with Glycerol as H-Donor: Catalyst Activation, Deactivation and Homogeneity. ACS Sustainable Chemistry and Engineering, 2019, 7, 15845-15853.	6.7	38
16	Strongly Coupled Phenazine–Porphyrin Dyads: Light-Harvesting Molecular Assemblies with Broad Absorption Coverage. ACS Applied Materials & Interfaces, 2019, 11, 8000-8008.	8.0	36
17	High Oxidation State Complexes of Rhodium and Iridium. , 2019, , 159-159.		0
18	Modification of a pyridine-alkoxide ligand during the synthesis of coordination compounds. Inorganica Chimica Acta, 2019, 484, 75-78.	2.4	2

#	Article	IF	CITATIONS
19	N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‣eveling, High Mn Oxidation States, and a Mn 2 O 2 Dimer Competent for Catalytic Oxygen Evolution. European Journal of Inorganic Chemistry, 2019, 2019, 2115-2123.	2.0	8
20	A Dinuclear Iridium(V,V) Oxo-Bridged Complex Characterized Using a Bulk Electrolysis Technique for Crystallizing Highly Oxidizing Compounds. Inorganic Chemistry, 2018, 57, 5684-5691.	4.0	17
21	Direct Interfacial Electron Transfer from High-Potential Porphyrins into Semiconductor Surfaces: A Comparison of Linkers and Anchoring Groups. Journal of Physical Chemistry C, 2018, 122, 13529-13539.	3.1	31
22	Key factors in pincer ligand design. Chemical Society Reviews, 2018, 47, 1959-1968.	38.1	364
23	On the damage done to the structure of the <i>Thermoplasma acidophilum</i> proteasome by electron radiation. Protein Science, 2018, 27, 2051-2061.	7.6	5
24	Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO ₂ Conversion to CO. ACS Catalysis, 2018, 8, 10131-10136.	11.2	28
25	Some crystal growth strategies for diffraction structure studies of iridium complexes. Inorganica Chimica Acta, 2018, 480, 183-188.	2.4	3
26	Water-Nucleophilic Attack Mechanism for the Cu ^{II} (pyalk) ₂ Water-Oxidation Catalyst. ACS Catalysis, 2018, 8, 7952-7960.	11.2	37
27	A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis. Accounts of Chemical Research, 2017, 50, 952-959.	15.6	84
28	Hypervalency, secondary bonding and hydrogen bonding: siblings under the skin. Chemical Society Reviews, 2017, 46, 1720-1729.	38.1	96
29	Inferring Protonation States of Hydroxamate Adsorbates on TiO ₂ Surfaces. Journal of Physical Chemistry C, 2017, 121, 11985-11990.	3.1	5
30	Nitrogen-Containing Liquid Organic Hydrogen Carriers: Progress and Prospects. ACS Sustainable Chemistry and Engineering, 2017, 5, 4491-4498.	6.7	89
31	Antimony Complexes for Electrocatalysis: Activity of a Mainâ€Group Element in Proton Reduction. Angewandte Chemie - International Edition, 2017, 56, 9111-9115.	13.8	51
32	Anchoring groups for photocatalytic water oxidation on metal oxide surfaces. Chemical Society Reviews, 2017, 46, 6099-6110.	38.1	189
33	Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes. New Journal of Chemistry, 2017, 41, 6709-6719.	2.8	12
34	Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand. ACS Catalysis, 2017, 7, 3384-3387.	11.2	149
35	Homogeneous Transition Metal Catalysis of Acceptorless Dehydrogenative Alcohol Oxidation: Applications in Hydrogen Storage and to Heterocycle Synthesis. Chemical Reviews, 2017, 117, 9228-9246.	47.7	432
36	Linker Length-Dependent Electron-Injection Dynamics of Trimesitylporphyrins on SnO ₂ Films. Journal of Physical Chemistry C, 2017, 121, 22690-22699.	3.1	13

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,Oâ€Đonor Organic Ligand. Angewandte Chemie, 2017, 129, 13227-13231.	2.0	11
38	Optimization of Photoanodes for Photocatalytic Water Oxidation by Combining a Heterogenized Iridium Waterâ€Oxidation Catalyst with a Highâ€Potential Porphyrin Photosensitizer. ChemSusChem, 2017, 10, 4526-4534.	6.8	34
39	Antimony Complexes for Electrocatalysis: Activity of a Mainâ€Group Element in Proton Reduction. Angewandte Chemie, 2017, 129, 9239-9243.	2.0	12
40	Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,Oâ€Đonor Organic Ligand. Angewandte Chemie - International Edition, 2017, 56, 13047-13051.	13.8	24
41	Activation, Deactivation and Reversibility in a Series of Homogeneous Iridium Dehydrogenation Catalysts. Israel Journal of Chemistry, 2017, 57, 937-944.	2.3	14
42	Redox Activity of Oxo-Bridged Iridium Dimers in an N,O-Donor Environment: Characterization of Remarkably Stable Ir(IV,V) Complexes. Journal of the American Chemical Society, 2017, 139, 9672-9683.	13.7	45
43	Introduction: CH Activation. Chemical Reviews, 2017, 117, 8481-8482.	47.7	264
44	A full set of iridium(<scp>iv</scp>) pyridine-alkoxide stereoisomers: highly geometry-dependent redox properties. Chemical Science, 2017, 8, 1642-1652.	7.4	32
45	Cp* versus Bis-carbonyl Iridium Precursors as CH Oxidation Precatalysts. Organometallics, 2017, 36, 199-206.	2.3	9
46	Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor. ACS Catalysis, 2016, 6, 5371-5377.	11.2	79
47	High-Potential Porphyrins Supported on SnO ₂ and TiO ₂ Surfaces for Photoelectrochemical Applications. Journal of Physical Chemistry C, 2016, 120, 28971-28982.	3.1	28
48	Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy. Journal of the American Chemical Society, 2016, 138, 5511-5514.	13.7	63
49	Electrocatalytic Nitrogen Fixation for Distributed Fertilizer Production?. ACS Sustainable Chemistry and Engineering, 2016, 4, 5855-5858.	6.7	59
50	One-Step Trimethylstannylation of Benzyl and Alkyl Halides. Journal of Organic Chemistry, 2016, 81, 9483-9488.	3.2	4
51	Catalytic Oxygen Evolution from Manganese Complexes with an Oxidationâ€Resistant N,N,Oâ€Donor Ligand. ChemPlusChem, 2016, 81, 1129-1132.	2.8	18
52	Controlling the rectification properties of molecular junctions through molecule–electrode coupling. Nanoscale, 2016, 8, 16357-16362.	5.6	33
53	Organometallic Iridium Complex Containing a Dianionic, Tridentate, Mixed Organic–Inorganic Ligand. Inorganic Chemistry, 2016, 55, 8121-8129.	4.0	4
54	High Oxidation State Iridium Mono-μ-oxo Dimers Related to Water Oxidation Catalysis. Journal of the American Chemical Society, 2016, 138, 15917-15926.	13.7	41

#	Article	IF	CITATIONS
55	Surface-Induced Deprotection of THP-Protected Hydroxamic Acids on Titanium Dioxide. Journal of Physical Chemistry C, 2016, 120, 12495-12502.	3.1	11
56	Molecular design of light-harvesting photosensitizers: effect of varied linker conjugation on interfacial electron transfer. Physical Chemistry Chemical Physics, 2016, 18, 18678-18682.	2.8	21
57	Structure–function relationships in single molecule rectification by N-phenylbenzamide derivatives. New Journal of Chemistry, 2016, 40, 7373-7378.	2.8	7
58	New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis. Inorganic Chemistry, 2016, 55, 2427-2435.	4.0	28
59	Dihydrogen Complexation. Chemical Reviews, 2016, 116, 8750-8769.	47.7	170
60	Molecular titanium–hydroxamate complexes as models for TiO ₂ surface binding. Chemical Communications, 2016, 52, 2972-2975.	4.1	30
61	Facile solvolysis of a surprisingly twisted tertiary amide. New Journal of Chemistry, 2016, 40, 1974-1981.	2.8	3
62	Towards multielectron photocatalysis: a porphyrin array for lateral hole transfer and capture on a metal oxide surface. Physical Chemistry Chemical Physics, 2015, 17, 12728-12734.	2.8	29
63	A Stable Coordination Complex of Rh(IV) in an N,O-Donor Environment. Journal of the American Chemical Society, 2015, 137, 15692-15695.	13.7	27
64	Methanol Dehydrogenation by Iridium N-Heterocyclic Carbene Complexes. Inorganic Chemistry, 2015, 54, 5079-5084.	4.0	146
65	A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nature Communications, 2015, 6, 6469.	12.8	256
66	Molecular Catalysts for Water Oxidation. Chemical Reviews, 2015, 115, 12974-13005.	47.7	964
67	Iridium catalyzed reversible dehydrogenation – Hydrogenation of quinoline derivatives under mild conditions. Journal of Organometallic Chemistry, 2015, 792, 184-189.	1.8	71
68	Stable Iridium(IV) Complexes of an Oxidation-Resistant Pyridine-Alkoxide Ligand: Highly Divergent Redox Properties Depending on the Isomeric Form Adopted. Journal of the American Chemical Society, 2015, 137, 7243-7250.	13.7	51
69	Iridium-based complexes for water oxidation. Dalton Transactions, 2015, 44, 12452-12472.	3.3	156
70	Preparation of Halogenated Fluorescent Diaminophenazine Building Blocks. Journal of Organic Chemistry, 2015, 80, 9881-9888.	3.2	14
71	Gel-assisted crystallization of [Ir ₄ (IMe) ₇ (CO)H ₁₀] ²⁺ and [Ir ₄ (IMe) ₈ H ₉] ³⁺ clusters derived from catalytic glycerol dehydrogenation. Dalton Transactions, 2015, 44, 18403-18410.	3.3	20
72	Computational Design of Intrinsic Molecular Rectifiers Based on Asymmetric Functionalization of <i>N</i> -Phenylbenzamide. Journal of Chemical Theory and Computation, 2015, 11, 5888-5896.	5.3	34

#	Article	IF	CITATIONS
73	Selective conversion of glycerol to lactic acid with iron pincer precatalysts. Chemical Communications, 2015, 51, 16201-16204.	4.1	86
74	Deactivation in Homogeneous Transition Metal Catalysis: Causes, Avoidance, and Cure. Chemical Reviews, 2015, 115, 127-150.	47.7	294
75	Selective catalytic oxidation of sugar alcohols to lactic acid. Green Chemistry, 2015, 17, 594-600.	9.0	52
76	The stability of organometallic ligands in oxidation catalysis. Journal of Organometallic Chemistry, 2014, 751, 174-180.	1.8	34
77	Linker Rectifiers for Covalent Attachment of Transitionâ€Metal Catalysts to Metalâ€Oxide Surfaces. ChemPhysChem, 2014, 15, 1138-1147.	2.1	20
78	Co(ii), a catalyst for selective conversion of phenyl rings to carboxylic acid groups. RSC Advances, 2014, 4, 49395-49399.	3.6	6
79	A heterogeneous water oxidation catalyst from dicobalt octacarbonyl and 1,2-bis(diphenylphosphino)ethane. New Journal of Chemistry, 2014, 38, 1540.	2.8	13
80	Metal-free amidation of ether sp3 C–H bonds with sulfonamides using PhI(OAc)2. RSC Advances, 2014, 4, 47951-47957.	3.6	23
81	Experimental and computational studies of borohydride catalyzed hydrosilylation of a variety of Cî€O and Cî€N functionalities including esters, amides and heteroarenes. New Journal of Chemistry, 2014, 38, 1694-1700.	2.8	42
82	Electrochemical Activation of Cp* Iridium Complexes for Electrode-Driven Water-Oxidation Catalysis. Journal of the American Chemical Society, 2014, 136, 13826-13834.	13.7	105
83	Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nature Communications, 2014, 5, 5084.	12.8	207
84	Catalyst Activation by Loss of Cyclopentadienyl Ligands in Hydrogen Transfer Catalysis with Cp*Ir ^{III} Complexes. ACS Catalysis, 2014, 4, 973-985.	11.2	68
85	A Carbeneâ€Rich but Carbonylâ€Poor [Ir ₆ (IMe) ₈ (CO) ₂ H ₁₄] ²⁺ Polyhydride Cluster as a Deactivation Product from Catalytic Glycerol Dehydrogenation. Angewandte Chemie - International Edition. 2014. 53. 12808-12811.	13.8	42
86	A Carbeneâ€Rich but Carbonylâ€Poor [Ir ₆ (IMe) ₈ (CO) ₂ H ₁₄] ²⁺ Polyhydride Cluster as a Deactivation Product from Catalytic Glycerol Dehydrogenation. Angewandte Chemie, 2014, 126, 13022-13025.	2.0	9
87	Modular Assembly of High-Potential Zinc Porphyrin Photosensitizers Attached to TiO ₂ with a Series of Anchoring Groups. Journal of Physical Chemistry C, 2013, 117, 14526-14533.	3.1	90
88	Probing the Viability of Oxo-Coupling Pathways in Iridium-Catalyzed Oxygen Evolution. Organometallics, 2013, 32, 5384-5390.	2.3	42
89	Electron Injection Dynamics from Photoexcited Porphyrin Dyes into SnO2 and TiO2 Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 21662-21670.	3.1	54
90	Efficiency of Interfacial Electron Transfer from Zn-Porphyrin Dyes into TiO ₂ Correlated to the Linker Single Molecule Conductance. Journal of Physical Chemistry C, 2013, 117, 24462-24470.	3.1	55

#	Article	IF	CITATIONS
91	Abnormal, mesoionic and remote N-heterocyclic carbene complexes. Coordination Chemistry Reviews, 2013, 257, 755-766.	18.8	501
92	Comparison of primary oxidants for water-oxidation catalysis. Chemical Society Reviews, 2013, 42, 2247-2252.	38.1	227
93	Hydroxamate Anchors for Improved Photoconversion in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2013, 52, 6752-6764.	4.0	102
94	Cp* Iridium Precatalysts for Selective C–H Oxidation with Sodium Periodate As the Terminal Oxidant. Organometallics, 2013, 32, 957-965.	2.3	60
95	Outer sphere hydrogenation catalysis. New Journal of Chemistry, 2013, 37, 21-27.	2.8	161
96	Redox-active ligands in catalysis. Chemical Society Reviews, 2013, 42, 1440-1459.	38.1	880
97	Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes. Journal of the American Chemical Society, 2013, 135, 10837-10851.	13.7	193
98	Particle Formation during Oxidation Catalysis with Cp* Iridium Complexes. Journal of the American Chemical Society, 2012, 134, 9785-9795.	13.7	150
99	Light-driven water oxidation for solar fuels. Coordination Chemistry Reviews, 2012, 256, 2503-2520.	18.8	337
100	Sodium Periodate as a Primary Oxidant for Water-Oxidation Catalysts. Inorganic Chemistry, 2012, 51, 6147-6152.	4.0	86
101	Symmetrical Hydrogen Bonds in Iridium(III) Alkoxides with Relevance to Outer Sphere Hydrogen Transfer. Inorganic Chemistry, 2012, 51, 12313-12323.	4.0	17
102	A tridentate Ni pincer for aqueous electrocatalytic hydrogen production. New Journal of Chemistry, 2012, 36, 1149.	2.8	88
103	Fuel selection for a regenerative organic fuel cell/flow battery: thermodynamic considerations. Energy and Environmental Science, 2012, 5, 9534.	30.8	35
104	Cp* Iridium Precatalysts for Selective C–H Oxidation via Direct Oxygen Insertion: A Joint Experimental/Computational Study. ACS Catalysis, 2012, 2, 208-218.	11.2	82
105	Bioinspired High-Potential Porphyrin Photoanodes. Journal of Physical Chemistry C, 2012, 116, 4892-4902.	3.1	69
106	Electron-Rich CpIr(biphenyl-2,2′-diyl) Complexes with π-Accepting Carbon Donor Ligands. Organometallics, 2012, 31, 7158-7164.	2.3	17
107	Reduction of Systematic Uncertainty in DFT Redox Potentials of Transition-Metal Complexes. Journal of Physical Chemistry C, 2012, 116, 6349-6356.	3.1	145
108	Resolving Heterogeneity Problems and Impurity Artifacts in Operationally Homogeneous Transition Metal Catalysts. Chemical Reviews, 2012, 112, 1536-1554.	47.7	576

#	Article	IF	CITATIONS
109	Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chemical Science, 2011, 2, 94-98.	7.4	219
110	Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO ₂ Reduction Catalyst. Journal of the American Chemical Society, 2011, 133, 9274-9277.	13.7	388
111	An Iridium(IV) Species, [Cp*Ir(NHC)Cl] ⁺ , Related to a Water-Oxidation Catalyst. Organometallics, 2011, 30, 965-973.	2.3	127
112	Oxidative Synthesis of Amides and Pyrroles via Dehydrogenative Alcohol Oxidation by Ruthenium Diphosphine Diamine Complexes. Organometallics, 2011, 30, 4174-4179.	2.3	180
113	Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and Applied Chemistry, 2011, 83, 1637-1641.	1.9	1,449
114	Defining the hydrogen bond: An account (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83, 1619-1636.	1.9	856
115	Iridium-Catalyzed Hydrogenation of N-Heterocyclic Compounds under Mild Conditions by an Outer-Sphere Pathway. Journal of the American Chemical Society, 2011, 133, 7547-7562.	13.7	296
116	A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst. Energy and Environmental Science, 2011, 4, 2389.	30.8	257
117	Distinguishing Homogeneous from Heterogeneous Catalysis in Electrode-Driven Water Oxidation with Molecular Iridium Complexes. Journal of the American Chemical Society, 2011, 133, 10473-10481.	13.7	293
118	Multifunctional ligands in transition metal catalysis. New Journal of Chemistry, 2011, 35, 18-23.	2.8	229
119	Cp* Iridium Complexes Give Catalytic Alkane Hydroxylation with Retention of Stereochemistry. Journal of the American Chemical Society, 2010, 132, 12550-12551.	13.7	106
120	Creating Ligands with Multiple Personalities. Science, 2010, 330, 455-456.	12.6	29
121	Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer. Energy and Environmental Science, 2010, 3, 917.	30.8	99
122	Half-Sandwich Iridium Complexes for Homogeneous Water-Oxidation Catalysis. Journal of the American Chemical Society, 2010, 132, 16017-16029.	13.7	507
123	An Experimentalâ^'Theoretical Study of the Factors That Affect the Switch between Ruthenium-Catalyzed Dehydrogenative Amide Formation versus Amine Alkylation. Organometallics, 2010, 29, 6548-6558.	2.3	103
124	Acyl Protection Strategy for Synthesis of a Protic NHC Complex via N-Acyl Methanolysis. Organometallics, 2010, 29, 5728-5731.	2.3	50
125	Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis. Chemical Reviews, 2010, 110, 681-703.	47.7	1,457
126	Deposition of an oxomanganese water oxidation catalyst on TiO2 nanoparticles: computational modeling, assembly and characterization. Energy and Environmental Science, 2009, 2, 230.	30.8	80

#	Article	IF	CITATIONS
127	Highly Active and Robust Cp* Iridium Complexes for Catalytic Water Oxidation. Journal of the American Chemical Society, 2009, 131, 8730-8731.	13.7	561
128	Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energy and Environmental Science, 2009, 2, 1173.	30.8	91
129	Mechanism of Homogeneous Iridium-Catalyzed Alkylation of Amines with Alcohols from a DFT Study. Organometallics, 2008, 27, 2529-2535.	2.3	149
130	Acetylacetonate Anchors for Robust Functionalization of TiO ₂ Nanoparticles with Mn(II)â^'Terpyridine Complexes. Journal of the American Chemical Society, 2008, 130, 14329-14338.	13.7	151
131	Hydrogen storage in liquid organic heterocycles. Energy and Environmental Science, 2008, 1, 134.	30.8	348
132	Characterization of siloxane adsorbates covalently attached to TiO 2. Proceedings of SPIE, 2008, , .	0.8	10
133	Iridium(III) Complexes with the Weakly Bonded Anions [BF4]- and [Oso2 CF3] Inorganic Syntheses, 2007, , 22-27.	0.3	2
134	No Protection Required. Science, 2007, 318, 756-757.	12.6	8
135	Pentahydridobis(Tricyclohexylphosphine)-Iridium(V) and Trihydridotris(Triphenylphos-phine)Iridium(III). Inorganic Syntheses, 2007, , 303-308.	0.3	5
136	Dihydridobis(Solvent)Bis(Triphenyl-Phosphine)Iridium(III) Tetrafluoroborates. Inorganic Syntheses, 2007, , 56-60.	0.3	6
137	Dihydridobis(Solvent)Bis(Triphenylphosphine)Iridium(III) Tetrafluoroborates. Inorganic Syntheses, 2007, , 122-126.	0.3	4
138	Syntheses, 2007, , 173-176.	0.3	16
139	Iridium(III) Complexes with the Weakly Bonded Anions [Bf4]- and [Oso2 Cf3] Inorganic Syntheses, 2007, , 117-121.	0.3	2
140	Atom economic synthesis of amides via transition metal catalyzed rearrangement of oxaziridines. Green Chemistry, 2007, 9, 976.	9.0	36
141	Computational structure–activity relationships in H2storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chemical Communications, 2007, , 2231-2233.	4.1	163
142	Ultrafast Photooxidation of Mn(II)â^'Terpyridine Complexes Covalently Attached to TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 11982-11990.	3.1	82
143	Catalysed low temperature H2 release from nitrogen heterocycles. New Journal of Chemistry, 2006, 30, 1675.	2.8	121
144	Interplay of Linker,N-Substituent, and Counterion Effects in the Formation and Geometrical Distortion ofN-Heterocyclic Biscarbene Complexes of Rhodium(I). Organometallics, 2006, 25, 6099-6107.	2.3	124

#	Article	IF	CITATIONS
145	Chelate and Pincer Carbene Complexes. , 2006, , 223-239.		3
146	Electronic and Steric Effects in the Insertion of Alkynes into an Iridium(III) Hydride. Organometallics, 2005, 24, 62-76.	2.3	71
147	Intramolecular Oxygen Transfer from Nitro Groups to Câ‹®C Bonds Mediated by Iridium Hydrides. Organometallics, 2005, 24, 3066-3073.	2.3	40
148	Axially Chiral Bidentate N-Heterocyclic Carbene Ligands Derived from BINAM:Â Rhodium and Iridium Complexes in Asymmetric Ketone Hydrosilylation. Organometallics, 2005, 24, 4432-4436.	2.3	127
149	Cycloiridation of α,β-Unsaturated Ketones, Esters, and Acetophenone. Organometallics, 2005, 24, 4810-4815.	2.3	46
150	Stoichiometric Câ^'C Coupling Reactions in the Coordination Sphere of an Iridium(III) Alkyl. Organometallics, 2004, 23, 3378-3387.	2.3	45
151	Reactivity Differences in the Syntheses of Chelating N-Heterocyclic Carbene Complexes of Rhodium Are Ascribed to Ligand Anisotropy. Organometallics, 2004, 23, 1253-1263.	2.3	199
152	Dimer-of-Dimers Model for the Oxygen-Evolving Complex of Photosystem II. Synthesis and Properties of [MnIV4O5(terpy)4(H2O)2](ClO4)6. Journal of the American Chemical Society, 2004, 126, 7345-7349.	13.7	127
153	Pincer and Chelate N-Heterocyclic Carbene Complexes of Rh, Ir, and Pd: Synthetic Routes, Dynamics, Catalysis, Abnormal Binding, and Counterion Effects. ACS Symposium Series, 2004, , 169-183.	0.5	7
154	Abnormal C5-Bound N-Heterocyclic Carbenes:Â Extremely Strong Electron Donor Ligands and Their Iridium(I) and Iridium(III) Complexes. Organometallics, 2004, 23, 2461-2468.	2.3	311
155	Rhodium and Iridium Complexes of N-Heterocyclic Carbenes via Transmetalation:Â Structure and Dynamics. Organometallics, 2003, 22, 1663-1667.	2.3	539
156	Outer sphere anion participation can modify the mechanism for conformer interconversion in Pd pincer complexes. Dalton Transactions, 2003, , 831-838.	3.3	84
157	An η2-vinyl pathway may explain net trans hydrosilylation via transition metal catalysis even in cyclic cases. New Journal of Chemistry, 2003, 27, 771-772.	2.8	37
158	lon pairing effects in intramolecular heterolytic H2 activation in an Ir(iii) complex: a combined theoretical/experimental study. New Journal of Chemistry, 2003, 27, 80-87.	2.8	69
159	CHEMISTRY: A New Oxidation State for Pd?. Science, 2002, 295, 288-289.	12.6	50
160	Counter-ion effects switch ligand binding from C-2 to C-5 in kinetic carbenes formed from an imidazolium salt and IrH5(PPh3)2. Chemical Communications, 2002, , 2580-2581.	4.1	82
161	Chelated Iridium(III) Bis-carbene Complexes as Air-Stable Catalysts for Transfer Hydrogenation. Organometallics, 2002, 21, 3596-3604.	2.3	315

High-Frequency EPR Study of a New Mononuclear Manganese(III) Complex:Â [(terpy)Mn(N3)3] (terpy =) Tj ETQq0 $\begin{array}{c} 0 \\ 4.0 \\ 74 \end{array}$ rgBT /Qyerlock 10

#	Article	IF	CITATIONS
163	Characterization of the O2-Evolving Reaction Catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO3)3(terpy = 2,2â€~:6,2â€~Ââ€~-Terpyridine). Journal of the America Chemical Society, 2001, 123, 423-430.	an 13.7	336
164	Computed Ligand Electronic Parameters from Quantum Chemistry and Their Relation to Tolman Parameters, Lever Parameters, and Hammett Constants. Inorganic Chemistry, 2001, 40, 5806-5811.	4.0	233
165	A Pd complex of a tridentate pincer CNC bis-carbene ligand as a robust homogenous Heck catalyst. Chemical Communications, 2001, , 201-202.	4.1	404
166	Rapid screening and combinatorial methods in homogeneous organometallic catalysis. Pure and Applied Chemistry, 2001, 73, 119-128.	1.9	74
167	The mechanism of the Ni-Fe hydrogenases: a quantum chemical perspective. Journal of Biological Inorganic Chemistry, 2001, 6, 460-466.	2.6	45
168	Title is missing!. Journal of Cluster Science, 2000, 11, 189-216.	3.3	11
169	Modeling the Oxygen-Evolving Complex in Photosystem II. , 2000, , 509-541.		8
170	A Functional Model for O-O Bond Formation by the O2-Evolving Complex in Photosystem II. Science, 1999, 283, 1524-1527.	12.6	701
171	Effects of a Nonligating Pendant Hydrogen-Bonding Group in a Metal Complex:Â Stabilization of an HF Complex. Organometallics, 1999, 18, 1615-1621.	2.3	60
172	A Quantum Chemical Study of the Mechanism of Tyrosinase. Journal of Physical Chemistry B, 1999, 103, 1193-1202.	2.6	71
173	Study of the Nâ^'H··AĤâ^'B Dihydrogen Bond Including the Crystal Structure of BH3NH3 by Neutron Diffraction. Journal of the American Chemical Society, 1999, 121, 6337-6343.	13.7	475
174	Nitrogen Fixation by Nitrogenases:  A Quantum Chemical Study. Journal of Physical Chemistry B, 1998, 102, 1615-1623.	2.6	97
175	Catalytic Photodefluorination of Perfluoroalkanes to Perfluoroalkenes with a Ferrocene Photosensitizer. Organometallics, 1998, 17, 1582-1586.	2.3	32
176	Mechanism of Hâ^'H Activation by Nickelâ^'Iron Hydrogenase. Journal of the American Chemical Society, 1998, 120, 548-555.	13.7	173
177	Mechanism of Câ~'H Activation by Diiron Methane Monooxygenases:Â Quantum Chemical Studies. Journal of the American Chemical Society, 1997, 119, 3103-3113.	13.7	302
178	Origin of Solvent Acceleration in Organolithium Metalâ^'Halogen Exchange Reactions. Organometallics, 1997, 16, 6021-6023.	2.3	28
179	Hydrogen transfer in the presence of amino acid radicals. Theoretical Chemistry Accounts, 1997, 97, 289-300.	1.4	71
180	Consequences of the Formation of an Organometallic Exciplex [Hg(η2-arene)] in Mercury-Photosensitized Reactions of Arenes:Â Câ^'C, Câ^'O, and Câ^'N Bond Cleavage. Organometallics, 1996, 15, 1157-1165.	2.3	8

#	Article	IF	CITATIONS
181	Modeling the Solvent Sphere:Â Mechanism of the Shilov Reaction. Journal of the American Chemical Society, 1996, 118, 4442-4450.	13.7	145
182	A New Intermolecular Interaction:  UnconventionalHydrogen Bonds with Elementâ^'Hydride Bonds as ProtonAcceptor. Accounts of Chemical Research, 1996, 29, 348-354.	15.6	639
183	Eine ungewöhnliche intermolekulare Dreizentrenâ€Nâ€H âƒ>H ₂ Reâ€Wasserstoffbrücke zwischen [ReH ₅ (PPh ₃) ₃] und Indol im Kristall. Angewandte Chemie, 1995, 107, 2711-2713.	2.0	22
184	Seven-Coordinate Iridium(V) Polyhydrides with Chelating Bis(silyl) Ligands. Inorganic Chemistry, 1995, 34, 2937-2941.	4.0	42
185	Factors Affecting the Strength of N-H.cntdotcntdotcntdot.H-Ir Hydrogen Bonds. Journal of the American Chemical Society, 1995, 117, 3485-3491.	13.7	244
186	Amination of Methane and Ethane by Mercury Photosensitization in the Presence of Ammonia. Angewandte Chemie International Edition in English, 1993, 32, 1491-1492.	4.4	31
187	Homogeneous tungsten, rhenium, and iridium catalysts in alkane dehydrogenation driven by reflux of substrate or of cosolvent or by inert-gas flow. Organometallics, 1993, 12, 294-298.	2.3	94
188	Mercury-Photosensitized C—H Bond Functionalization. Advances in Chemistry Series, 1992, , 197-210.	0.6	2
189	Stabilization of iridium(I), -(III), and -(V) in an oxygen-donor ligand environment and the selective dehydrogenative silylation and hydrosilylation of ethylene with {C(Ph2P:O)3}Ir(ol)2. Organometallics, 1991, 10, 415-418.	2.3	74
190	Coordination chemistry of halocarbons. Coordination Chemistry Reviews, 1990, 99, 89-115.	18.8	207
191	Proton-coupled electron transfer in manganese complex [(bpy)2Mn(O)2Mn(bpy)2]3+. Journal of the American Chemical Society, 1989, 111, 9249-9250.	13.7	98
192	Some Structure-Activity Relationships in Homogeneous Transition Metal Catalysts. Comments on Inorganic Chemistry, 1985, 4, 229-240.	5.2	3
193	The organometallic chemistry of alkanes. Chemical Reviews, 1985, 85, 245-269.	47.7	1,237
194	An Efficient Synthesis of [Ir(cod)Cl] ₂ and Its Reaction with PMe ₂ Ph to Give <i>FAC</i> -[IrH(PMe ₂ C ₆ H ₄)(PMe ₂ Ph) ₃]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1982, 12, 407-413.	1.8	65
195	Iridium compounds in catalysis. Accounts of Chemical Research, 1979, 12, 331-337.	15.6	808
196	The preparation, properties and some catalytic reactions of mer-hydrido(tetrahydroborato)tris(methyldiphenylphosphine)ruthenium(II) and some related complexes. Journal of Organometallic Chemistry, 1978, 157, 335-344.	1.8	28
197	Organometallic Chemistry of Alkane Activation. , 0, , 653-679.		10
198	Bioinorganic Chemistry of Manganese Related to Photosynthetic Oxygen Evolution. Progress in Inorganic Chemistry, 0, , 99-142.	3.0	94