Peng Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5573287/publications.pdf Version: 2024-02-01

DENC KANC

#	Article	IF	CITATIONS
1	CuSn Doubleâ€Metal Hydroxides for Direct Electrochemical Ammonia Oxidation to Dinitrogen. ChemElectroChem, 2022, 9, .	1.7	7
2	CO ₂ Electrolysis System under Industrially Relevant Conditions. Accounts of Chemical Research, 2022, 55, 231-240.	7.6	45
3	Acidic Electrocatalytic CO ₂ Reduction Using Space-Confined Nanoreactors. ACS Applied Materials & Interfaces, 2022, 14, 7900-7908.	4.0	42
4	Phenolate-bonded bis(μ-oxido)-bis-copper(<scp>iii</scp>) intermediates: hydroxylation and dehalogenation reactivities. Faraday Discussions, 2022, 234, 86-108.	1.6	3
5	Membrane-electrode assembly electrolysis of CO2 to formate using indium nitride nanomaterials. Journal of CO2 Utilization, 2021, 45, 101449.	3.3	14
6	Metal Oxide/Nitrogen-Doped Carbon Catalysts Enables Highly Efficient CO2 Electroreduction. Transactions of Tianjin University, 2021, 27, 269-277.	3.3	7
7	Imineâ€Nitrogenâ€Doped Carbon Nanotubes for the Electrocatalytic Reduction of Flue Gas CO ₂ . ChemElectroChem, 2021, 8, 1792-1797.	1.7	12
8	Nitrogen-doped Zn–Ni oxide for electrochemical reduction of carbon dioxide in sea water. Rare Metals, 2021, 40, 3117.	3.6	22
9	Integrated Capture and Electroreduction of Flue Gas CO ₂ to Formate Using Amine Functionalized SnO _{<i>x</i>} Nanoparticles. ACS Energy Letters, 2021, 6, 3352-3358.	8.8	83
10	Activation of Ni Particles into Single Ni–N Atoms for Efficient Electrochemical Reduction of CO ₂ . Advanced Energy Materials, 2020, 10, 1903068.	10.2	210
11	Wellâ€Defined Singleâ€Atom Cobalt Catalyst for Electrocatalytic Flue Gas CO ₂ Reduction. Small, 2020, 16, e2001896.	5.2	85
12	Selective electrocatalytic reduction of carbon dioxide to oxalate by lead tin oxides with low overpotential. Applied Catalysis B: Environmental, 2020, 272, 118954.	10.8	36
13	Synergistic effect of N-doped layered double hydroxide derived NiZnAl oxides in CO ₂ electroreduction. Sustainable Energy and Fuels, 2019, 3, 1455-1460.	2.5	20
14	Electrocatalytic Reduction of CO ₂ to Methanol by Iron Tetradentate Phosphine Complex Through Amidation Strategy. ChemSusChem, 2019, 12, 2195-2201.	3.6	27
15	Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction. Applied Catalysis B: Environmental, 2019, 250, 347-354.	10.8	87
16	Acidic Electrochemical Reduction of CO ₂ Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 6106-6112.	3.2	49
17	Single Iridium Pincer Complex for Roundtrip Electrochemical Conversion between Carbon Dioxide and Formate. ChemCatChem, 2019, 11, 2069-2072.	1.8	15
18	Synthesis and characterization of novel sulfonated polyimide with varying chemical structure for fuel cell applications. Solid State Ionics, 2018, 319, 141-147.	1.3	16

Peng Kang

#	Article	IF	CITATIONS
19	Cobalt Complex with Redoxâ€Active Imino Bipyridyl Ligand for Electrocatalytic Reduction of Carbon Dioxide to Formate. ChemSusChem, 2018, 11, 1656-1663.	3.6	35
20	Nitrogenâ€Ðoped Ta ₂ O ₅ Nanocomposites for the Electrocatalytic Reduction of Carbon Dioxide to CO with Photoassistance. ChemElectroChem, 2018, 5, 799-804.	1.7	9
21	Adsorption of Pb ²⁺ ions on novel ternary nanocomposite of tin, iron and titania. Materials Research Express, 2018, 5, 025512.	0.8	11
22	Efficient photoelectrocatalytic CO2 reduction by cobalt complexes at silicon electrode. Chinese Journal of Catalysis, 2018, 39, 413-420.	6.9	13
23	Carbon-supported Ni nanoparticles for efficient CO ₂ electroreduction. Chemical Science, 2018, 9, 8775-8780.	3.7	179
24	Gas Phase Electrolysis of Carbon Dioxide to Carbon Monoxide Using Nickel Nitride as the Carbon Enrichment Catalyst. ACS Applied Materials & Interfaces, 2018, 10, 38024-38031.	4.0	54
25	Structural Design of Conjugated Poly (ferroceneâ€phenanthroline) for Photocatalytic Hydrogen Evolution from Water. ChemPhotoChem, 2018, 2, 791-795.	1.5	3
26	Nitrogen doped tin oxide nanostructured catalysts for selective electrochemical reduction of carbon dioxide to formate. Journal of Energy Chemistry, 2017, 26, 825-829.	7.1	41
27	Zinc Imidazolate Metal–Organic Frameworks (ZIFâ€8) for Electrochemical Reduction of CO ₂ to CO. ChemPhysChem, 2017, 18, 3142-3147.	1.0	141
28	Homogeneous electrocatalytic water oxidation catalyzed by a mononuclear nickel complex. Electrochimica Acta, 2017, 258, 353-359.	2.6	66
29	Formation of Hybrid Guanidine‣tabilized Bis(μâ€oxo)dicopper Cores in Solution: Electronic and Steric Perturbations. European Journal of Inorganic Chemistry, 2015, 2015, 5426-5436.	1.0	30
30	Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15809-15814.	3.3	140
31	Electrocatalytic Reduction of Carbon Dioxide: Let the Molecules Do the Work. Topics in Catalysis, 2015, 58, 30-45.	1.3	85
32	Artificial photosynthesis: Where are we now? Where can we go?. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 32-45.	5.6	158
33	Polyethylenimine-Enhanced Electrocatalytic Reduction of CO ₂ to Formate at Nitrogen-Doped Carbon Nanomaterials. Journal of the American Chemical Society, 2014, 136, 7845-7848.	6.6	591
34	Making syngas electrocatalytically using a polypyridyl ruthenium catalyst. Chemical Communications, 2014, 50, 335-337.	2.2	61
35	Single catalyst electrocatalytic reduction of CO ₂ in water to H ₂ +CO syngas mixtures with water oxidation to O ₂ . Energy and Environmental Science, 2014, 7, 4007-4012.	15.6	120
36	Rapid Selective Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium Pincer Catalyst Immobilized on Carbon Nanotube Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8709-8713.	7.2	221

Peng Kang

#	Article	IF	CITATIONS
37	Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. Journal of the American Chemical Society, 2014, 136, 1734-1737.	6.6	1,001
38	Cu(ii)/Cu(0) electrocatalyzed CO2 and H2O splitting. Energy and Environmental Science, 2013, 6, 813.	15.6	76
39	Electrocatalytic Water Oxidation with a Copper(II) Polypeptide Complex. Journal of the American Chemical Society, 2013, 135, 2048-2051.	6.6	429
40	Selective electrocatalytic reduction of carbon dioxide to formate by a water-soluble iridium pincer catalyst. Chemical Science, 2013, 4, 3497.	3.7	142
41	Selective Electrocatalytic Reduction of CO ₂ to Formate by Water-Stable Iridium Dihydride Pincer Complexes. Journal of the American Chemical Society, 2012, 134, 5500-5503.	6.6	293
42	Splitting CO ₂ into CO and O ₂ by a single catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15606-15611.	3.3	168
43	Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chemical Communications, 2011, 47, 12607.	2.2	209
44	Unexpected C _{carbene} â^'X (X: I, Br, Cl) Reductive Elimination from N-Heterocyclic Carbene Copper Halide Complexes Under Oxidative Conditions. Organometallics, 2010, 29, 3683-3685.	1.1	32
45	Bis(μ-oxo) Dicopper(III) Species of the Simplest Peralkylated Diamine: Enhanced Reactivity toward Exogenous Substrates. Inorganic Chemistry, 2010, 49, 11030-11038.	1.9	57
46	Phenolate Hydroxylation in a Bis(μ-oxo)dicopper(III) Complex: Lessons from the Guanidine/Amine Series. Journal of the American Chemical Society, 2009, 131, 1154-1169.	6.6	161
47	A novel sonication route to prepare anthracene nanoparticles. Materials Research Bulletin, 2004, 39, 545-551.	2.7	33
48	Fabrication of silica core–conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates. Synthetic Metals, 2003, 139, 391-396.	2.1	109