Peng Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5573287/publications.pdf

Version: 2024-02-01

126708 197535 5,512 48 33 49 h-index citations g-index papers 50 50 50 6773 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. Journal of the American Chemical Society, 2014, 136, 1734-1737.	6.6	1,001
2	Polyethylenimine-Enhanced Electrocatalytic Reduction of CO ₂ to Formate at Nitrogen-Doped Carbon Nanomaterials. Journal of the American Chemical Society, 2014, 136, 7845-7848.	6.6	591
3	Electrocatalytic Water Oxidation with a Copper(II) Polypeptide Complex. Journal of the American Chemical Society, 2013, 135, 2048-2051.	6.6	429
4	Selective Electrocatalytic Reduction of CO ₂ to Formate by Water-Stable Iridium Dihydride Pincer Complexes. Journal of the American Chemical Society, 2012, 134, 5500-5503.	6.6	293
5	Rapid Selective Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium Pincer Catalyst Immobilized on Carbon Nanotube Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8709-8713.	7.2	221
6	Activation of Ni Particles into Single Ni–N Atoms for Efficient Electrochemical Reduction of CO ₂ . Advanced Energy Materials, 2020, 10, 1903068.	10.2	210
7	Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chemical Communications, 2011, 47, 12607.	2.2	209
8	Carbon-supported Ni nanoparticles for efficient CO ₂ electroreduction. Chemical Science, 2018, 9, 8775-8780.	3.7	179
9	Splitting CO ₂ into CO and O ₂ by a single catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15606-15611.	3. 3	168
10	Phenolate Hydroxylation in a Bis($\hat{l}\frac{1}{4}$ -oxo)dicopper(III) Complex: Lessons from the Guanidine/Amine Series. Journal of the American Chemical Society, 2009, 131, 1154-1169.	6.6	161
11	Artificial photosynthesis: Where are we now? Where can we go?. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 32-45.	5 . 6	158
12	Selective electrocatalytic reduction of carbon dioxide to formate by a water-soluble iridium pincer catalyst. Chemical Science, 2013, 4, 3497.	3.7	142
13	Zinc Imidazolate Metal–Organic Frameworks (ZIFâ€8) for Electrochemical Reduction of CO ₂ to CO. ChemPhysChem, 2017, 18, 3142-3147.	1.0	141
14	Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15809-15814.	3.3	140
15	Single catalyst electrocatalytic reduction of CO ₂ in water to H ₂ +CO syngas mixtures with water oxidation to O ₂ . Energy and Environmental Science, 2014, 7, 4007-4012.	15.6	120
16	Fabrication of silica core–conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates. Synthetic Metals, 2003, 139, 391-396.	2.1	109
17	Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction. Applied Catalysis B: Environmental, 2019, 250, 347-354.	10.8	87
18	Electrocatalytic Reduction of Carbon Dioxide: Let the Molecules Do the Work. Topics in Catalysis, 2015, 58, 30-45.	1.3	85

#	Article	IF	Citations
19	Wellâ€Defined Singleâ€Atom Cobalt Catalyst for Electrocatalytic Flue Gas CO ₂ Reduction. Small, 2020, 16, e2001896.	5.2	85
20	Integrated Capture and Electroreduction of Flue Gas CO ₂ to Formate Using Amine Functionalized SnO _{<i>x</i>} Nanoparticles. ACS Energy Letters, 2021, 6, 3352-3358.	8.8	83
21	Cu(ii)/Cu(0) electrocatalyzed CO2 and H2O splitting. Energy and Environmental Science, 2013, 6, 813.	15.6	76
22	Homogeneous electrocatalytic water oxidation catalyzed by a mononuclear nickel complex. Electrochimica Acta, 2017, 258, 353-359.	2.6	66
23	Making syngas electrocatalytically using a polypyridyl ruthenium catalyst. Chemical Communications, 2014, 50, 335-337.	2.2	61
24	Bis($\hat{l}\frac{1}{4}$ -oxo) Dicopper(III) Species of the Simplest Peralkylated Diamine: Enhanced Reactivity toward Exogenous Substrates. Inorganic Chemistry, 2010, 49, 11030-11038.	1.9	57
25	Gas Phase Electrolysis of Carbon Dioxide to Carbon Monoxide Using Nickel Nitride as the Carbon Enrichment Catalyst. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38024-38031.	4.0	54
26	Acidic Electrochemical Reduction of CO ₂ Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 6106-6112.	3.2	49
27	CO ₂ Electrolysis System under Industrially Relevant Conditions. Accounts of Chemical Research, 2022, 55, 231-240.	7.6	45
28	Acidic Electrocatalytic CO ₂ Reduction Using Space-Confined Nanoreactors. ACS Applied Materials & Description of the Action of the Confined Nanoreactors of the Confined Nanoreactor	4.0	42
29	Nitrogen doped tin oxide nanostructured catalysts for selective electrochemical reduction of carbon dioxide to formate. Journal of Energy Chemistry, 2017, 26, 825-829.	7.1	41
30	Selective electrocatalytic reduction of carbon dioxide to oxalate by lead tin oxides with low overpotential. Applied Catalysis B: Environmental, 2020, 272, 118954.	10.8	36
31	Cobalt Complex with Redoxâ€Active Imino Bipyridyl Ligand for Electrocatalytic Reduction of Carbon Dioxide to Formate. ChemSusChem, 2018, 11, 1656-1663.	3.6	35
32	A novel sonication route to prepare anthracene nanoparticles. Materials Research Bulletin, 2004, 39, 545-551.	2.7	33
33	Unexpected C _{carbene} â^'X (X: I, Br, Cl) Reductive Elimination from N-Heterocyclic Carbene Copper Halide Complexes Under Oxidative Conditions. Organometallics, 2010, 29, 3683-3685.	1.1	32
34	Formation of Hybrid Guanidineâ€Stabilized Bis(μâ€oxo)dicopper Cores in Solution: Electronic and Steric Perturbations. European Journal of Inorganic Chemistry, 2015, 2015, 5426-5436.	1.0	30
35	Electrocatalytic Reduction of CO ₂ to Methanol by Iron Tetradentate Phosphine Complex Through Amidation Strategy. ChemSusChem, 2019, 12, 2195-2201.	3.6	27
36	Nitrogen-doped Zn–Ni oxide for electrochemical reduction of carbon dioxide in sea water. Rare Metals, 2021, 40, 3117.	3.6	22

#	Article	IF	CITATIONS
37	Synergistic effect of N-doped layered double hydroxide derived NiZnAl oxides in CO ₂ electroreduction. Sustainable Energy and Fuels, 2019, 3, 1455-1460.	2.5	20
38	Synthesis and characterization of novel sulfonated polyimide with varying chemical structure for fuel cell applications. Solid State Ionics, 2018, 319, 141-147.	1.3	16
39	Single Iridium Pincer Complex for Roundtrip Electrochemical Conversion between Carbon Dioxide and Formate. ChemCatChem, 2019, 11, 2069-2072.	1.8	15
40	Membrane-electrode assembly electrolysis of CO2 to formate using indium nitride nanomaterials. Journal of CO2 Utilization, 2021, 45, 101449.	3.3	14
41	Efficient photoelectrocatalytic CO2 reduction by cobalt complexes at silicon electrode. Chinese Journal of Catalysis, 2018, 39, 413-420.	6.9	13
42	Imineâ€Nitrogenâ€Doped Carbon Nanotubes for the Electrocatalytic Reduction of Flue Gas CO ₂ . ChemElectroChem, 2021, 8, 1792-1797.	1.7	12
43	Adsorption of Pb ²⁺ ions on novel ternary nanocomposite of tin, iron and titania. Materials Research Express, 2018, 5, 025512.	0.8	11
44	Nitrogenâ€Doped Ta ₂ O ₅ Nanocomposites for the Electrocatalytic Reduction of Carbon Dioxide to CO with Photoassistance. ChemElectroChem, 2018, 5, 799-804.	1.7	9
45	Metal Oxide/Nitrogen-Doped Carbon Catalysts Enables Highly Efficient CO2 Electroreduction. Transactions of Tianjin University, 2021, 27, 269-277.	3.3	7
46	CuSn Doubleâ€Metal Hydroxides for Direct Electrochemical Ammonia Oxidation to Dinitrogen. ChemElectroChem, 2022, 9, .	1.7	7
47	Structural Design of Conjugated Poly (ferroceneâ€phenanthroline) for Photocatalytic Hydrogen Evolution from Water. ChemPhotoChem, 2018, 2, 791-795.	1.5	3
48	Phenolate-bonded bis(ν-oxido)-bis-copper(<scp>iii</scp>) intermediates: hydroxylation and dehalogenation reactivities. Faraday Discussions, 2022, 234, 86-108.	1.6	3