Yaguang Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/557317/publications.pdf

Version: 2024-02-01

102 3,955 38
papers citations h-index

102 102 102 2638 all docs docs citations times ranked citing authors

59

g-index

#	Article	IF	CITATIONS
1	Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. Journal of Agricultural and Food Chemistry, 2012, 60, 7644-7651.	2.4	312
2	Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed â€~Red Oak Leaf' lettuce. Food Microbiology, 2006, 23, 241-249.	2.1	179
3	Microbial and quality changes in minimally processed baby spinach leaves stored under super atmospheric oxygen and modified atmosphere conditions. Postharvest Biology and Technology, 2004, 33, 51-59.	2.9	158
4	Determination of Free Chlorine Concentrations Needed To Prevent Escherichia coli O157:H7 Cross-Contamination during Fresh-Cut Produce Wash. Journal of Food Protection, 2011, 74, 352-358.	0.8	158
5	A pilot plant scale evaluation of a new process aid for enhancing chlorine efficacy against pathogen survival and cross-contamination during produce wash. International Journal of Food Microbiology, 2012, 158, 133-139.	2.1	120
6	Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. Journal of Food Composition and Analysis, 2016, 49, 87-93.	1.9	111
7	Microgreen nutrition, food safety, and shelf life: A review. Journal of Food Science, 2020, 85, 870-882.	1.5	104
8	Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biology and Technology, 2015, 110, 140-148.	2.9	94
9	Dynamic Effects of Free Chlorine Concentration, Organic Load, and Exposure Time on the Inactivation of Salmonella, Escherichia coli O157:H7, and Non-O157 Shiga Toxin–Producing E. coli. Journal of Food Protection, 2013, 76, 386-393.	0.8	91
10	Effect of initial oxygen concentration and film oxygen transmission rate on the quality of fresh-cut romaine lettuce. Journal of the Science of Food and Agriculture, 2005, 85, 1622-1630.	1.7	84
11	Enhanced Inactivation of Salmonella and Pseudomonas Biofilms on Stainless Steel by Use of T-128, a Fresh-Produce Washing Aid, in Chlorinated Wash Solutions. Applied and Environmental Microbiology, 2012, 78, 6789-6798.	1.4	82
12	Silver Nanocluster-Embedded Zein Films as Antimicrobial Coating Materials for Food Packaging. ACS Applied Materials & Discrete Samp; Interfaces, 2017, 9, 35297-35304.	4.0	80
13	Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics. Advanced Composites and Hybrid Materials, 2021, 4, 696-706.	9.9	79
14	Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT - Food Science and Technology, 2019, 101, 731-737.	2.5	77
15	Fresh-cut Produce Wash Water Reuse Affects Water Quality and Packaged Product Quality and Microbial Growth in Romaine Lettuce. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 1413-1419.	0.5	73
16	Effect of light exposure on sensorial quality, concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage. Food Chemistry, 2014, 151, 472-479.	4.2	72
17	Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT - Food Science and Technology, 2014, 55, 551-558.	2.5	72
18	Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation. Food Microbiology, 2018, 70, 120-128.	2.1	71

#	Article	IF	Citations
19	Pre-harvest calcium application increases biomass and delays senescence of broccoli microgreens. Postharvest Biology and Technology, 2014, 87, 70-78.	2.9	70
20	Effect of Storage Temperature and Duration on the Behavior of ⟨i⟩Escherichia coli⟨/i⟩ O157:H7 on Packaged Freshâ€Cut Salad Containing Romaine and Iceberg Lettuce. Journal of Food Science, 2010, 75, M390-7.	1.5	65
21	Metabolomic Assessment Reveals an Elevated Level of Glucosinolate Content in CaCl ₂ Treated Broccoli Microgreens. Journal of Agricultural and Food Chemistry, 2015, 63, 1863-1868.	2.4	57
22	Machine learning-enabled non-destructive paper chromogenic array detection of multiplexed viable pathogens on food. Nature Food, 2021, 2, 110-117.	6.2	54
23	Chlorine Stabilizer Tâ€128 Enhances Efficacy of Chlorine against Crossâ€Contamination byâ€, <i>E. coli</i> â€,O157:H7 andâ€, <i>Salmonella</i> â€,in Freshâ€Cut Lettuce Processing. Journal of Food Science, 2011, M218-24.	765	53
24	Assessment and speciation of chlorine demand in fresh-cut produce wash water. Food Control, 2016, 60, 543-551.	2.8	53
25	Postharvest biology, quality and shelf life of buckwheat microgreens. LWT - Food Science and Technology, 2013, 51, 73-78.	2.5	52
26	Inactivation dynamics of Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 in wash water during simulated chlorine depletion and replenishment processes. Food Microbiology, 2015, 50, 88-96.	2.1	52
27	Temperature abuse timing affects the rate of quality deterioration of commercially packaged ready-to-eat baby spinach. Part I: Sensory analysis and selected quality attributes. Postharvest Biology and Technology, 2014, 91, 96-103.	2.9	51
28	Package Atmosphere Affects Postharvest Biology and Quality of Fresh-cut Cilantro Leaves. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 567-570.	0.5	51
29	Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures. Food Microbiology, 2018, 73, 73-84.	2.1	50
30	Elucidation of the mechanism of enzymatic browning inhibition by sodium chlorite. Food Chemistry, 2008, 110, 847-851.	4.2	49
31	Delayed Modified Atmosphere Packaging of Fresh-cut Romaine Lettuce: Effects on Quality Maintenance and Shelf-life. Journal of the American Society for Horticultural Science, 2005, 130, 116-123.	0.5	48
32	Fate of Escherichia coli O157:H7 in the Presence of Indigenous Microorganisms on Commercially Packaged Baby Spinach, as Impacted by Storage Temperature and Time. Journal of Food Protection, 2009, 72, 2038-2045.	0.8	46
33	Enzymatic browning and its control in fresh-cut produce. Stewart Postharvest Review, 2007, 3, 1-7.	0.7	46
34	Proliferation of Escherichia coli 0157:H7 in Soil-Substitute and Hydroponic Microgreen Production Systems. Journal of Food Protection, 2015, 78, 1785-1790.	0.8	43
35	Development of Metal–Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce. Journal of Agricultural and Food Chemistry, 2016, 64, 5164-5170.	2.4	42
36	Growth and survival of Salmonella enterica and Listeria monocytogenes on fresh-cut produce and their juice extracts: Impacts and interactions of food matrices and temperature abuse conditions. Food Control, 2019, 100, 300-304.	2.8	42

#	Article	IF	CITATIONS
37	Investigation on chlorine-based sanitization under stabilized conditions in the presence of organic load. International Journal of Food Microbiology, 2018, 266, 150-157.	2.1	41
38	Effect of preharvest CaCl2 spray and postharvest UV-B radiation on storage quality of broccoli microgreens, a richer source of glucosinolates. Journal of Food Composition and Analysis, 2018, 67, 55-62.	1.9	39
39	Evaluation of Current Industry Practices for Maintaining Tomato Dump Tank Water Quality during Packinghouse Operations. Journal of Food Processing and Preservation, 2014, 38, 2201-2208.	0.9	34
40	Open-refrigerated retail display case temperature profile and its impact on product quality and microbiota of stored baby spinach. Food Control, 2015, 47, 686-692.	2.8	34
41	Potential of Escherichia coli O157:H7 to grow on field-cored lettuce as impacted by postharvest storage time and temperature. International Journal of Food Microbiology, 2009, 128, 506-509.	2.1	33
42	The mechanism of ethanol treatment on inhibiting lettuce enzymatic browning and microbial growth. LWT - Food Science and Technology, 2015, 63, 383-390.	2.5	33
43	Enzyme- and Relative Humidity-Responsive Antimicrobial Fibers for Active Food Packaging. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50298-50308.	4.0	33
44	Growth of Salmonella enterica and Listeria monocytogenes on Fresh-Cut Cantaloupe under Different Temperature Abuse Scenarios. Journal of Food Protection, 2015, 78, 1125-1131.	0.8	31
45	A mathematical model for pathogen cross-contamination dynamics during produce wash. Food Microbiology, 2015, 51, 101-107.	2.1	28
46	Development of an Algorithm for Feed-Forward Chlorine Dosing of Lettuce Wash Operations and Correlation of Chlorine Profile with Escherichia coli O157:H7 Inactivation. Journal of Food Protection, 2014, 77, 558-566.	0.8	27
47	Improving spinach quality and reducing energy costs by retrofitting retail open refrigerated cases with doors. Postharvest Biology and Technology, 2015, 110, 114-120.	2.9	27
48	Identification of romaine lettuce (Lactuca sativa var. longifolia) Cultivars with reduced browning discoloration for fresh-cut processing. Postharvest Biology and Technology, 2019, 156, 110931.	2.9	27
49	Direct Metatranscriptome RNA-seq and Multiplex RT-PCR Amplicon Sequencing on Nanopore MinION – Promising Strategies for Multiplex Identification of Viable Pathogens in Food. Frontiers in Microbiology, 2020, 11, 514.	1.5	26
50	An entrapped metal-organic framework system for controlled release of ethylene. Journal of Colloid and Interface Science, 2019, 533, 207-215.	5.0	25
51	Salmonella inactivation and cross-contamination on cherry and grape tomatoes under simulated wash conditions. Food Microbiology, 2020, 87, 103359.	2.1	25
52	Assessment of Escherichia coli O157:H7 transference from soil to iceberg lettuce via a contaminated field coring harvesting knife. International Journal of Food Microbiology, 2012, 153, 345-350.	2.1	24
53	Nondestructive multiplex detection of foodborne pathogens with background microflora and symbiosis using a paper chromogenic array and advanced neural network. Biosensors and Bioelectronics, $2021, 183, 113209$.	5.3	24
54	Integrated Portable Shrimp-Freshness Prediction Platform Based on Ice-Templated Metal–Organic Framework Colorimetric Combinatorics and Deep Convolutional Neural Networks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16926-16936.	3.2	24

#	Article	IF	CITATIONS
55	Susceptibility of foodborne pathogens to sanitizers in produce rinse water and potential induction of viable but non-culturable state. Food Control, 2020, 112, 107138.	2.8	23
56	Impact of routine sanitation on the microbiomes in a fresh produce processing facility. International Journal of Food Microbiology, 2019, 294, 31-41.	2.1	22
57	Survival and growth of Listeria monocytogenes on whole cantaloupes is dependent on site of contamination and storage temperature. International Journal of Food Microbiology, 2016, 234, 65-70.	2.1	21
58	A novel microfluidic mixer-based approach for determining inactivation kinetics of Escherichia coli O157:H7 in chlorine solutions. Food Microbiology, 2015, 49, 152-160.	2.1	20
59	Immersion-free, single-pass, commercial fresh-cut produce washing system: An alternative to flume processing. Postharvest Biology and Technology, 2018, 146, 124-133.	2.9	20
60	Microbiome convergence following sanitizer treatment and identification of sanitizer resistant species from spinach and lettuce rinse water. International Journal of Food Microbiology, 2020, 318, 108458.	2.1	19
61	An Integrated Food Freshness Sensor Array System Augmented by a Metal–Organic Framework Mixed-Matrix Membrane and Deep Learning. ACS Sensors, 2022, 7, 1847-1854.	4.0	18
62	Effects of Postharvest Handling Conditions on Internalization and Growth of Salmonella enterica in Tomatoes. Journal of Food Protection, 2014, 77, 365-370.	0.8	17
63	Facile and template-free solvothermal synthesis of mesoporous/macroporous metal–organic framework nanosheets. RSC Advances, 2018, 8, 33059-33064.	1.7	16
64	Whole-head washing, prior to cutting, provides sanitization advantages for fresh-cut Iceberg lettuce (Latuca sativa L.). International Journal of Food Microbiology, 2014, 179, 18-23.	2.1	15
65	Impacts and interactions of organic compounds with chlorine sanitizer in recirculated and reused produce processing water. PLoS ONE, 2018, 13, e0208945.	1.1	15
66	Listeria monocytogenes biofilm formation as affected by stainless steel surface topography and coating composition. Food Control, 2021, 130, 108275.	2.8	15
67	Minimizing pathogen growth and quality deterioration of packaged leafy greens by maintaining optimum temperature in refrigerated display cases with doors. Food Control, 2018, 92, 488-495.	2.8	13
68	Identification of marker compounds for predicting browning of fresh-cut lettuce using untargeted UHPLC-HRMS metabolomics. Postharvest Biology and Technology, 2021, 180, 111626.	2.9	13
69	Effects of temperature abuse on the growth and survival of Listeria monocytogenes on a wide variety of whole and fresh-cut fruits and vegetables during storage. Food Control, 2022, 137, 108919.	2.8	13
70	Enhanced Chlorine Efficacy against Bacterial Pathogens in Wash Solution with High Organic Loads. Journal of Food Processing and Preservation, 2012, 36, 560-566.	0.9	12
71	Temperature profiling of open- and closed-doored produce cases in retail grocery stores. Food Control, 2020, 113, 107158.	2.8	11
72	Survival and Growth of <i>Listeria monocytogenes</i> on Fresh-Cut "Athena―and "Rocky Ford― Cantaloupes During Storage at 4°C and 10A°C. Foodborne Pathogens and Disease, 2016, 13, 587-591.	0.8	10

#	Article	IF	Citations
73	Effect of door opening frequency and duration of an enclosed refrigerated display case on product temperatures and energy consumption. Food Control, 2020, 111, 107044.	2.8	10
74	Improving temperature management and retaining quality of fresh-cut leafy greens by retrofitting open refrigerated retail display cases with doors. Journal of Food Engineering, 2021, 292, 110271.	2.7	10
75	A novel antimicrobial technology to enhance food safety and quality of leafy vegetables using engineered water nanostructures. Environmental Science: Nano, 2021, 8, 514-526.	2.2	10
76	Flume and single-pass washing systems for fresh-cut produce processing: Disinfection by-products evaluation. Food Control, 2022, 133, 108578.	2.8	10
77	Edible and water-soluble corn zein coating impregnated with nisin for Listeria monocytogenes reduction on nectarines and apples. Postharvest Biology and Technology, 2022, 185, 111811.	2.9	10
78	Evaluating strawberry breeding selections for postharvest fruit decay. Euphytica, 2012, 186, 539-555.	0.6	9
79	Dynamic changes in the physicochemical properties of fresh-cut produce wash water as impacted by commodity type and processing conditions. PLoS ONE, 2019, 14, e0222174.	1.1	9
80	Survival of Salmonella enterica and shifts in the culturable mesophilic aerobic bacterial community as impacted by tomato wash water particulate size and chlorine treatment. Food Microbiology, 2020, 90, 103470.	2.1	9
81	Preharvest UVB Application Increases Glucosinolate Contents and Enhances Postharvest Quality of Broccoli Microgreens. Molecules, 2021, 26, 3247.	1.7	9
82	Metal–Organic Framework-Stabilized High Internal Phase Pickering Emulsions Based on Computer Simulation for Curcumin Encapsulation: Comprehensive Characterization and Stability Mechanism. ACS Omega, 2021, 6, 26556-26565.	1.6	9
83	Phenotypic characterization and inheritance of enzymatic browning on cut surfaces of stems and leaf ribs of romaine lettuce. Postharvest Biology and Technology, 2021, 181, 111653.	2.9	9
84	Antimicrobial effects of thymol-loaded phytoglycogen/zein nanocomplexes against foodborne pathogens on fresh produce. International Journal of Biological Macromolecules, 2022, 209, 1188-1196.	3.6	9
85	Determination of Variance of Secondary Metabolites in Lettuces Grown Under Different Light Sources by Flow Injection Mass Spectrometric (FIMS) Fingerprinting and ANOVA–PCA. Journal of Analysis and Testing, 2018, 2, 312-321.	2.5	8
86	Determining effects of temperature abuse timing on shelf life of RTE baby spinach through microbial growth models and its association with sensory quality. Food Control, 2022, 133, 108639.	2.8	8
87	Quaternized chitosan as a biopolymer sanitizer for leafy vegetables: synthesis, characteristics, and traditional vs. dry nano-aerosol applications. Food Chemistry, 2022, 378, 132056.	4.2	7
88	Dynamics of Listeria monocytogenes and the microbiome on fresh-cut cantaloupe and romaine lettuce during storage at refrigerated and abusive temperatures. International Journal of Food Microbiology, 2022, 364, 109531.	2.1	6
89	Charting the Future of E-Grocery: An Evaluation of the Use of Digital Imagery as a Sensory Analysis Tool for Fresh Fruits. Horticulturae, 2021, 7, 262.	1.2	5
90	Nanoemulsified Carvacrol as a Novel Washing Treatment Reduces Escherichia coli O157:H7 on Spinach and Lettuce. Journal of Food Protection, 2021, 84, 2163-2173.	0.8	5

#	Article	IF	CITATIONS
91	Sequential Application of Peracetic Acid and UV Irradiation (PAA–UV/PAA) for Improved Bacterial Inactivation in Fresh-Cut Produce Wash Water. ACS ES&T Water, 2022, 2, 1247-1253.	2.3	5
92	Genetic diversity provides opportunities for improvement of fresh-cut pepper quality. Plant Genetic Resources: Characterisation and Utilisation, 2016, 14, 112-120.	0.4	4
93	Alkynyl silver modified chitosan and its potential applications in food area. Carbohydrate Polymers, 2021, 254, 117416.	5.1	4
94	Characterization and mitigation of chemical oxygen demand and chlorine demand from fresh produce wash water. Food Control, 2021, 127, 108112.	2.8	4
95	Factors Impacting Chemical and Microbiological Quality of Wash Water during Simulated Dump Tank Wash of Grape Tomatoes. Journal of Food Protection, 2021, 84, 695-703.	0.8	4
96	Influence of Free Chlorine and Contact Time on the Reduction of Salmonella Cross-Contamination of Tomatoes in a Model Flume System. Journal of Food Protection, 2022, 85, 22-26.	0.8	3
97	Numerical simulation and experimental validation of bacterial detachment using a spherical produce model in an industrial-scale flume washer. Food Control, 2021, 130, 108300.	2.8	3
98	Salmonella inactivation and sponge/microfiber mediated cross-contamination during papaya wash with chlorine or peracetic acid as sanitizer. Food Microbiology, 2021, 95, 103677.	2.1	2
99	Determining Bacterial Load and Water Quality Parameters of Chlorinated Tomato Flume Tanks in Florida Packinghouses. Journal of Food Protection, 2021, 84, 1784-1792.	0.8	2
100	Evaluating Strawberry Breeding Selections for Field and Postharvest Fruit Decay. International Journal of Fruit Science, 2013, 13, 126-138.	1.2	1
101	A Novel Sensing Chip for Probing Chlorine Permeation into Simulated Produce Cracks. Advanced Materials Interfaces, 2018, 5, 1800119.	1.9	1
102	Assessment of a novel in-flight washing device: Microbial reduction and food quality of chopped iceberg lettuce during storage. Food Control, 2021, 120, 107538.	2.8	1