Lourdes Basabe-Desmonts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paper based microfluidic platform for single-step detection of mesenchymal stromal cells secreted VEGF. Analytica Chimica Acta, 2022, 1199, 339588.	5.4	9
2	Magneto Twister: Magneto Deformation of the Water–Air Interface by a Superhydrophobic Magnetic Nanoparticle Layer. Langmuir, 2022, 38, 3360-3369.	3.5	9
3	lonogel-based hybrid polymer-paper handheld platform for nitrite and nitrate determination in water samples. Analytica Chimica Acta, 2022, 1205, 339753.	5.4	8
4	High-Resolution 3D Printing Fabrication of a Microfluidic Platform for Blood Plasma Separation. Polymers, 2022, 14, 2537.	4.5	10
5	A method for the controllable fabrication of optical fiber-based localized surface plasmon resonance sensors. Scientific Reports, 2022, 12, .	3.3	4
6	Cytochrome c detection by plasmonic nanospectroscopy on optical fiber facets. Sensors and Actuators B: Chemical, 2021, 330, 129358.	7.8	9
7	Microfluidics and materials for smart water monitoring: A review. Analytica Chimica Acta, 2021, 1186, 338392.	5.4	30
8	Continuous monitoring of cell transfection efficiency with micropatterned substrates. Biotechnology and Bioengineering, 2021, 118, 2626-2636.	3.3	1
9	Tunable Superparamagnetic Ring (tSPRing) for Droplet Manipulation. Advanced Functional Materials, 2021, 31, 2100178.	14.9	19
10	TiO ₂ Nanotubes Alginate Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: Lactate and Glucose. ACS Applied Materials & Interfaces, 2021, 13, 37734-37745.	8.0	50
11	Modular micropumps fabricated by 3D printed technologies for polymeric microfluidic device applications. Sensors and Actuators B: Chemical, 2021, 342, 129991.	7.8	14
12	An electroactive and thermo-responsive material for the capture and release of cells. Biosensors and Bioelectronics, 2021, 191, 113405.	10.1	4
13	Alginate Bead Biosystem for the Determination of Lactate in Sweat Using Image Analysis. Biosensors, 2021, 11, 379.	4.7	16
14	Predicting Dimensions in Microfluidic Paper Based Analytical Devices. Sensors, 2021, 21, 101.	3.8	4
15	lonogel based material for the colorimetric detection of $\hat{\mathfrak{l}}$ "9-tetrahydrocannabinol. , 2021, , .		0
16	Advances in Microtechnology for Improved Cytotoxicity Assessment. Frontiers in Materials, 2020, 7, .	2.4	5
17	Naked eye Y amelogenin gene fragment detection using DNAzymes on a paper-based device. Analytica Chimica Acta, 2020, 1123, 1-8.	5.4	11
18	Optical Single Cell Resolution Cytotoxicity Biosensor Based on Single Cell Adhesion Dot Arrays. Analytical Chemistry, 2020, 92, 9658-9665.	6.5	14

2

#	Article	IF	CITATIONS
19	Microfluidic chip with pillar arrays for controlled production and observation of lipid membrane nanotubes. Lab on A Chip, 2020, 20, 2748-2755.	6.0	11
20	Wearable biosensors and sample handling strategies. , 2020, , 65-88.		10
21	Selective Ultrasensitive Optical Fiber Nanosensors Based on Plasmon Resonance Energy Transfer. ACS Sensors, 2020, 5, 2018-2024.	7.8	13
22	Large-Volume Self-Powered Disposable Microfluidics by the Integration of Modular Polymer Micropumps with Plastic Microfluidic Cartridges. Industrial & Engineering Chemistry Research, 2020, 59, 22485-22491.	3.7	8
23	Extracellular matrix protein microarray-based biosensor with single cell resolution: Integrin profiling and characterization of cell-biomaterial interactions. Sensors and Actuators B: Chemical, 2019, 299, 126954.	7.8	16
24	Type 1 Diabetes Mellitus reversal via implantation of magnetically purified microencapsulated pseudoislets. International Journal of Pharmaceutics, 2019, 560, 65-77.	5.2	12
25	Driving flows in microfluidic paper-based analytical devices with a cholinium based poly(ionic liquid) hydrogel. Sensors and Actuators B: Chemical, 2018, 261, 372-378.	7.8	27
26	Review on microfluidic paper-based analytical devices towards commercialisation. Analytica Chimica Acta, 2018, 1001, 1-17.	5.4	379
27	Manipulation of fluid flow direction in microfluidic paper-based analytical devices with an ionogel negative passive pump. Sensors and Actuators B: Chemical, 2017, 247, 114-123.	7.8	28
28	Microtechnologies for Cell Microenvironment Control and Monitoring. Micromachines, 2017, 8, 166.	2.9	14
29	Self-Powered Microfluidic Device for Rapid Assay of Antiplatelet Drugs. Langmuir, 2016, 32, 2820-2828.	3.5	17
30	Tunable Nanoparticle and Cell Assembly Using Combined Selfâ€Powered Microfluidics and Microcontact Printing. Advanced Functional Materials, 2016, 26, 8053-8061.	14.9	18
31	Low-cost origami fabrication of 3D self-aligned hybrid microfluidic structures. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	12
32	Biomolecule storage on non-modified thermoplastic microfluidic chip by ink-jet printing of ionogels. Biomicrofluidics, 2015, 9, 044124.	2.4	14
33	Hierarchical Self-Assembly of Gold Nanoparticles into Patterned Plasmonic Nanostructures. ACS Nano, 2014, 8, 10694-10703.	14.6	137
34	Assaying the efficacy of dual-antiplatelet therapy: use of a controlled-shear-rate microfluidic device with a well-defined collagen surface to track dynamic platelet adhesion. Analytical and Bioanalytical Chemistry, 2013, 405, 4823-4834.	3.7	13
35	From particle to platelet: Optimization of a stable, high brightness fluorescent nanoparticle based cell detection platform. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 540-549.	3.3	9
36	Individual Platelet Adhesion Assay: Measuring Platelet Function and Antiplatelet Therapies in Whole Blood via Digital Quantification of Cell Adhesion. Analytical Chemistry, 2013, 85, 6497-6504.	6.5	17

#	Article	IF	CITATIONS
37	Reactive deposition of nano-films in deep polymeric microcavities. Lab on A Chip, 2012, 12, 4877.	6.0	11
38	Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab on A Chip, 2011, 11, 845-850.	6.0	304
39	Novel disposable biochip platform employing supercritical angle fluorescence for enhanced fluorescence collection. Biomedical Microdevices, 2011, 13, 759-767.	2.8	8
40	Shear-Mediated Platelet Adhesion Analysis in Less Than 100 μ L of Blood: Toward a POC Platelet Diagnostic. IEEE Transactions on Biomedical Engineering, 2011, 58, 826-830.	4.2	20
41	High efficiency amine functionalization of cycloolefin polymer surfaces for biodiagnostics. Journal of Materials Chemistry, 2010, 20, 4116.	6.7	51
42	Protein pattern transfer for biosensor applications. Biosensors and Bioelectronics, 2010, 25, 1295-1300.	10.1	8
43	Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. Microfluidics and Nanofluidics, 2010, 9, 695-703.	2.2	27
44	Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces. Biomedical Microdevices, 2010, 12, 987-1000.	2.8	41
45	Integrated system investigating shear-mediated platelet interactions with von Willebrand factor using microliters of whole blood. Analytical Biochemistry, 2010, 405, 174-183.	2.4	25
46	Single-Step Separation of Platelets from Whole Blood Coupled with Digital Quantification by Interfacial Platelet Cytometry (iPC). Langmuir, 2010, 26, 14700-14706.	3.5	42
47	New trends in bioanalytical microdevices to assess platelet function. Expert Review of Molecular Diagnostics, 2010, 10, 869-874.	3.1	9
48	Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. , 2009, , .		1
49	Whole-Blood Diagnostic Sensing System Based on Populational Platelet Rolling Behavior. ECS Transactions, 2009, 19, 73-77.	0.5	0
50	Thin film diffusion barrier formation in PDMS microcavities. , 2009, , .		1
51	Combinatorial Libraries of Fluorescent Monolayers on Glass. , 2009, , 81-115.		2
52	Fluorescent sensor array in a microfluidic chip. Analytical and Bioanalytical Chemistry, 2008, 390, 307-315.	3.7	24
53	Fabrication and Visualization of Metalâ€ion Patterns on Glass by Dipâ€Pen Nanolithography. ChemPhysChem, 2008, 9, 1680-1687.	2.1	16
54	Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs. Sensors, 2007, 7, 1731-1746.	3.8	31

#	Article	IF	CITATIONS
55	Self-Assembled Monolayers of a Multifunctional Organic Radical. Angewandte Chemie - International Edition, 2007, 46, 2215-2219.	13.8	56
56	Design of fluorescent materials for chemical sensing. Chemical Society Reviews, 2007, 36, 993.	38.1	909
57	Combinatorial Fabrication of Fluorescent Patterns with Metal Ions Using Soft Lithography. Advanced Materials, 2006, 18, 1028-1032.	21.0	16
58	A combinatorial approach to surface-confined cation sensors in water. Journal of Materials Chemistry, 2005, 15, 2772.	6.7	58
59	Combinatorial Method for Surface-Confined Sensor Design and Fabrication. , 2005, , 169-188.		11
60	Combinatorial Method for Surface-Confined Sensor Design and Fabrication. , 2005, , 169-188.		0
61	A Simple Approach to Sensor Discovery and Fabrication on Self-Assembled Monolayers on Glass. Journal of the American Chemical Society, 2004, 126, 7293-7299.	13.7	165
62	Diagnosi azkarrera bideratutako gailu mikro-fluidikoen garapen eta azterketa. Ekaia (journal), 0, , 115-126.	0.0	0
63	Underwater Magneto Driven Air De-bubbler. Journal of Materials Chemistry A, 0, , .	10.3	1