Natsuki Hosono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572764/publications.pdf

Version: 2024-02-01

1.5	260	1478505	1281871	
15	268	6	11	
papers	citations	h-index	g-index	
1.5	1.5	15	200	
15	15	15	289	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Numerical Simulation Study of Debris Particles Movement Characteristics by Smoothed Particle Hydrodynamics. Journal of Disaster Research, 2022, 17, 237-245.	0.7	0
2	The Influence of Equation of State on the Giant Impact Simulations. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
3	Merging Criteria for Planetesimal Collisions. Astrophysical Journal, 2021, 921, 163.	4.5	1
4	N-body Simulations of the Ring Formation Process around the Dwarf Planet Haumea. Astrophysical Journal, 2020, 897, 21.	4.5	4
5	Implementation of SPH and DEM for a PEZY-SC Heterogeneous Many-Core System. Mechanisms and Machine Science, 2020, , 709-715.	0.5	0
6	Can the Uranian Satellites Form from a Debris Disk Generated by a Giant Impact?. Astrophysical Journal, 2019, 885, 132.	4.5	4
7	Terrestrial magma ocean origin of the Moon. Nature Geoscience, 2019, 12, 418-423.	12.9	56
8	The Performance Prediction and Improvement of SPH with the Interaction-List-Sharing Method on PEZY-SCs. Lecture Notes in Computer Science, 2019, , 476-482.	1.3	1
9	Particle Number Dependence of the N-body Simulations of Moon Formation. Astrophysical Journal, 2018, 856, 175.	4.5	3
10	Unconvergence of very-large-scale giant impact simulations. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	40
11	Implementation and performance of FDPS: a framework for developing parallel particle simulation codes. Publication of the Astronomical Society of Japan, 2016, 68, .	2.5	94
12	The giant impact simulations with density independent smoothed particle hydrodynamics. Icarus, 2016, 271, 131-157.	2.5	27
13	A COMPARISON OF SPH ARTIFICIAL VISCOSITIES AND THEIR IMPACT ON THE KEPLERIAN DISK. Astrophysical Journal, Supplement Series, 2016, 224, 32.	7.7	16
14	FDPS., 2015,,.		5
15	Density-Independent Smoothed Particle Hydrodynamics for a Non-Ideal Equation of State. Publication of the Astronomical Society of Japan, 2013, 65, .	2.5	14