Chao Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572583/publications.pdf

Version: 2024-02-01

	172207	168136
3,030	29	53
citations	h-index	g-index
6.1	6.1	2020
61	61	3838
docs citations	times ranked	citing authors
	citations 61	3,030 29 citations h-index 61 61

#	Article	IF	CITATIONS
1	Functional amyloid-chitin hybrid ink coupled with flexible fabrication approaches for diverse macro and micro-structures. Materials Today Bio, 2022, 13, 100179.	2.6	3
2	Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy and Environmental Science, 2022, 15, 529-549.	15.6	30
3	Force Spectra of a Single CsgA Molecule and Amyloid Nanofibers Assembled from Chimeric Mfp5 and CBD Proteins: Implications for a Nanomaterial Testing Machine. ACS Applied Nano Materials, 2022, 5, 1758-1766.	2.4	1
4	A Bi‣ayer Hydrogel Cardiac Patch Made of Recombinant Functional Proteins. Advanced Materials, 2022, 34, e2201411.	11.1	24
5	Bacterial biofilms as platforms engineered for diverse applications. Biotechnology Advances, 2022, 57, 107932.	6.0	23
6	Photocatalyst-mineralized biofilms as living bio-abiotic interfaces for single enzyme to whole-cell photocatalytic applications. Science Advances, 2022, 8, eabm7665.	4.7	16
7	Biofilm-inspired Amyloid-Polysaccharide Composite Materials. Applied Materials Today, 2022, 27, 101497.	2.3	4
8	Engineering microbial systems for the production and functionalization of biomaterials. Current Opinion in Microbiology, 2022, 68, 102154.	2.3	5
9	Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread. Nature Communications, 2022, 13, 2731.	5.8	8
10	Probing the growth and mechanical properties of Bacillus subtilis biofilms through genetic mutation strategies. Synthetic and Systems Biotechnology, 2022, 7, 965-971.	1.8	4
11	Diatom-inspired multiscale mineralization of patterned protein–polysaccharide complex structures. National Science Review, 2021, 8, nwaa191.	4.6	7
12	Living materials fabricated via gradient mineralization of light-inducible biofilms. Nature Chemical Biology, 2021, 17, 351-359.	3.9	85
13	Materials design by synthetic biology. Nature Reviews Materials, 2021, 6, 332-350.	23.3	190
14	Harnessing proteins for engineered living materials. Current Opinion in Solid State and Materials Science, 2021, 25, 100896.	5.6	7
15	Biofilm-Mediated Immobilization of a Multienzyme Complex for Accelerating Inositol Production from Starch. Bioconjugate Chemistry, 2021, 32, 2032-2042.	1.8	6
16	Vertical nanopillar induces deformation of cancer cell and alteration of ATF3 expression. Applied Materials Today, 2020, 20, 100753.	2.3	5
17	Programming Living Glue Systems to Perform Autonomous Mechanical Repairs. Matter, 2020, 3, 2080-2092.	5.0	41
18	Force spectra of single bacterial amyloid CsgA nanofibers. RSC Advances, 2020, 10, 21986-21992.	1.7	4

#	Article	IF	CITATIONS
19	Conformable self-assembling amyloid protein coatings with genetically programmable functionality. Science Advances, 2020, 6, eaba1425.	4.7	36
20	Spores hit the spot. Nature Chemical Biology, 2020, 16, 108-109.	3.9	4
21	Genetic Engineering of Filamentous Fungi for Efficient Protein Expression and Secretion. Frontiers in Bioengineering and Biotechnology, 2020, 8, 293.	2.0	50
22	Virus Disinfection from Environmental Water Sources Using Living Engineered Biofilm Materials. Advanced Science, 2020, 7, 1903558.	5.6	28
23	AAV-ie enables safe and efficient gene transfer to inner ear cells. Nature Communications, 2019, 10, 3733.	5.8	136
24	Biofilm Nanofiber-Coated Separators for Dendrite-Free Lithium Metal Anode and Ultrahigh-Rate Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32373-32380.	4.0	59
25	Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications. National Science Review, 2019, 6, 929-943.	4.6	41
26	Exploiting mammalian low-complexity domains for liquid-liquid phase separation–driven underwater adhesive coatings. Science Advances, 2019, 5, eaax3155.	4.7	62
27	Patterned Amyloid Materials Integrating Robustness and Genetically Programmable Functionality. Nano Letters, 2019, 19, 8399-8408.	4.5	31
28	Engineered Bacillus subtilis biofilms as living glues. Materials Today, 2019, 28, 40-48.	8.3	72
29	Critical role of spectrin in hearing development and deafness. Science Advances, 2019, 5, eaav7803.	4.7	113
30	Modular genetic design of multi-domain functional amyloids: insights into self-assembly and functional properties. Chemical Science, 2019, 10, 4004-4014.	3.7	18
31	Directing curli polymerization with DNA origami nucleators. Nature Communications, 2019, 10, 1395.	5.8	22
32	Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nature Chemical Biology, 2019, 15, 34-41.	3.9	202
33	Programming Cells for Dynamic Assembly of Inorganic Nanoâ€Objects with Spatiotemporal Control. Advanced Materials, 2018, 30, e1705968.	11.1	40
34	Programming Integrative Extracellular and Intracellular Biocatalysis for Rapid, Robust, and Recyclable Synthesis of Trehalose. ACS Catalysis, 2018, 8, 1837-1842.	5.5	35
35	Emerging Paradigms for Synthetic Design of Functional Amyloids. Journal of Molecular Biology, 2018, 430, 3720-3734.	2.0	23
36	Adhesive bacterial amyloid nanofiber-mediated growth of metal–organic frameworks on diverse polymeric substrates. Chemical Science, 2018, 9, 5672-5678.	3.7	18

#	Article	IF	Citations
37	Lipids as integral components in mussel adhesion. Soft Matter, 2018, 14, 7145-7154.	1.2	15
38	Self-Assembled Nanofibers for Strong Underwater Adhesion: The Trick of Barnacles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25017-25025.	4.0	40
39	Self-assembly and morphological characterization of two-component functional amyloid proteins. Chinese Chemical Letters, 2017, 28, 1062-1068.	4.8	15
40	Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains. ACS Nano, 2017, 11, 6985-6995.	7.3	41
41	Natural and bio-inspired underwater adhesives: Current progress and new perspectives. APL Materials, 2017, 5, .	2.2	45
42	Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics. Journal of Materials Chemistry B, 2015, 3, 4953-4958.	2.9	27
43	Engineering Living Functional Materials. ACS Synthetic Biology, 2015, 4, 8-11.	1.9	119
44	Taking electrons out of bioelectronics: bioprotonic memories, transistors, and enzyme logic. Journal of Materials Chemistry C, 2015, 3, 6407-6412.	2.7	43
45	Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nature Nanotechnology, 2014, 9, 858-866.	15.6	370
46	Chitin nanofiber micropatterned flexible substrates for tissue engineering. Journal of Materials Chemistry B, 2013, 1, 4217.	2.9	68
47	Advanced engineering and biomimetic materials for bone repair and regeneration. Frontiers of Materials Science, 2013, 7, 313-334.	1.1	7
48	H+-type and OHâ^'-type biological protonic semiconductors and complementary devices. Scientific Reports, 2013, 3, 2481.	1.6	90
49	Biomimetic mineralization of acid polysaccharide-based hydrogels: towards porous 3-dimensional bone-like biocomposites. Journal of Materials Chemistry, 2012, 22, 6080.	6.7	59
50	Self-assembled chitin nanofiber templates for artificial neural networks. Journal of Materials Chemistry, 2012, 22, 3105.	6.7	47
51	A polysaccharide bioprotonic field-effect transistor. Nature Communications, 2011, 2, 476.	5.8	224
52	A Chitin Nanofiber Ink for Airbrushing, Replica Molding, and Microcontact Printing of Selfâ€assembled Macroâ€, Microâ€, and Nanostructures. Advanced Materials, 2011, 23, 4776-4781.	11.1	78
53	Nanofiber Ink: A Chitin Nanofiber Ink for Airbrushing, Replica Molding, and Microcontact Printing of Selfâ€assembled Macroâ€, Microâ€, and Nanostructures (Adv. Mater. 41/2011). Advanced Materials, 2011, 23, 4720-4720.	11.1	3
54	Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan–polyethylene glycol diacrylate hybrid hydrogels. Acta Biomaterialia, 2010, 6, 3908-3918.	4.1	120

#	Article	IF	CITATIONS
55	On the Origin of Amorphous Cores in Biomimetic CaCO ₃ Spherulites: New Insights into Spherulitic Crystallization. Crystal Growth and Design, 2010, 10, 5043-5049.	1.4	44
56	A facile bottom-up route to self-assembled biogenic chitin nanofibers. Soft Matter, 2010, 6, 5298.	1.2	90
57	Acid Polysaccharide-Induced Amorphous Calcium Carbonate (ACC) Films: Colloidal Nanoparticle Self-Organization Process. Langmuir, 2009, 25, 3045-3049.	1.6	28
58	Engineering Bacillus subtilis Biofilms as Living Functional Materials. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0