Tibor Harkany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572198/publications.pdf Version: 2024-02-01

TIROD HADRANY

#	Article	IF	CITATIONS
1	Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 2016, 352, 1326-1329.	12.6	817
2	Amyloid β-Induced Neuronal Hyperexcitability Triggers Progressive Epilepsy. Journal of Neuroscience, 2009, 29, 3453-3462.	3.6	545
3	Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 2003, 551, 139-153.	2.9	508
4	Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity. Science, 2007, 316, 1212-1216.	12.6	463
5	Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nature Neuroscience, 2017, 20, 176-188.	14.8	384
6	Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nature Biotechnology, 2016, 34, 175-183.	17.5	361
7	The emerging functions of endocannabinoid signaling during CNS development. Trends in Pharmacological Sciences, 2007, 28, 83-92.	8.7	357
8	Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting. Cell, 2018, 175, 1031-1044.e18.	28.9	332
9	Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity. Cell, 2017, 168, 86-100.e15.	28.9	330
10	Reversible Paired Helical Filament-Like Phosphorylation of Tau Is an Adaptive Process Associated with Neuronal Plasticity in Hibernating Animals. Journal of Neuroscience, 2003, 23, 6972-6981.	3.6	313
11	Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. Nature Biotechnology, 2017, 35, 444-452.	17.5	278
12	Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8760-8765.	7.1	263
13	Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19115-19120.	7.1	251
14	βâ€Amyloid neurotoxicity is mediated by a glutamateâ€ŧriggered excitotoxic cascade in rat nucleus basalis. European Journal of Neuroscience, 2000, 12, 2735-2745.	2.6	245
15	Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nature Reviews Neuroscience, 2014, 15, 786-801.	10.2	235
16	Increased Abundance of Opioid Receptor Heteromers After Chronic Morphine Administration. Science Signaling, 2010, 3, ra54.	3.6	191
17	Miswiring the brain: Â9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO Journal, 2014, 33, 668-685.	7.8	189
18	WNT signaling in activated microglia is proinflammatory. Glia, 2011, 59, 119-131.	4.9	187

#	Article	IF	CITATIONS
19	SAT1, a glutamine transporter, is preferentially expressed in GABAergic neurons. Frontiers in Neuroanatomy, 2010, 4, 1.	1.7	171
20	Molecular reorganization of endocannabinoid signalling in Alzheimer's disease. Brain, 2011, 134, 1041-1060.	7.6	164
21	Endocannabinoid functions controlling neuronal specification during brain development. Molecular and Cellular Endocrinology, 2008, 286, S84-S90.	3.2	149
22	Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcome. European Archives of Psychiatry and Clinical Neuroscience, 2009, 259, 395-412.	3.2	142
23	Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nature Communications, 2020, 11, 4816.	12.8	126
24	miR-183 cluster scales mechanical pain sensitivity by regulating basal and neuropathic pain genes. Science, 2017, 356, 1168-1171.	12.6	124
25	Action of Glucocorticoids on Survival of Nerve Cells: Promoting Neurodegeneration or Neuroprotection? ¹ . Journal of Neuroendocrinology, 2001, 13, 749-760.	2.6	112
26	Mechanisms of ß-Amyloid Neurotoxicity: Perspectives of Pharmacotherapy. Reviews in the Neurosciences, 2000, 11, 329-82.	2.9	107
27	Molecular design of hypothalamus development. Nature, 2020, 582, 246-252.	27.8	105
28	Neuronal substrates and functional consequences of prenatal cannabis exposure. European Child and Adolescent Psychiatry, 2014, 23, 931-941.	4.7	103
29	β-Amyloid(Phe(SO3H)24)25–35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behavioural Brain Research, 1998, 90, 133-145.	2.2	101
30	Wiring and firing neuronal networks: endocannabinoids take center stage. Current Opinion in Neurobiology, 2008, 18, 338-345.	4.2	98
31	Differential Subcellular Recruitment of Monoacylglycerol Lipase Generates Spatial Specificity of 2-Arachidonoyl Glycerol Signaling during Axonal Pathfinding. Journal of Neuroscience, 2010, 30, 13992-14007.	3.6	94
32	Endocannabinoid-Independent Retrograde Signaling at Inhibitory Synapses in Layer 2/3 of Neocortex: Involvement of Vesicular Glutamate Transporter 3. Journal of Neuroscience, 2004, 24, 4978-4988.	3.6	90
33	Neuroprotective approaches in experimental models of β-Amyloid neurotoxicity: Relevance to Alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1999, 23, 963-1008.	4.8	89
34	Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons. European Journal of Neuroscience, 2004, 20, 1290-1306.	2.6	88
35	Unique Luminal Localization of VGAT-C Terminus Allows for Selective Labeling of Active Cortical GABAergic Synapses. Journal of Neuroscience, 2008, 28, 13125-13131.	3.6	87
36	Molecular model of cannabis sensitivity in developing neuronal circuits. Trends in Pharmacological Sciences, 2011, 32, 551-561.	8.7	85

#	Article	IF	CITATIONS
37	Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides. PLoS ONE, 2013, 8, e67865.	2.5	85
38	Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer's disease. Journal of Neurochemistry, 2013, 125, 157-171.	3.9	79
39	GABA action in immature neocortical neurons directly depends on the availability of ketone bodies. Journal of Neurochemistry, 2009, 110, 1330-1338.	3.9	78
40	Non-fibrillar β-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors. European Journal of Neuroscience, 2006, 23, 2035-2047.	2.6	76
41	Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease. Acta Neuropathologica, 2013, 125, 215-229.	7.7	76
42	The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of K _v 7 channels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2472-81.	7.1	75
43	A secretagogin locus of the mammalian hypothalamus controls stress hormone release. EMBO Journal, 2015, 34, 36-54.	7.8	75
44	At the Tip of an Iceberg: Prenatal Marijuana and Its Possible Relation to Neuropsychiatric Outcome in the Offspring. Biological Psychiatry, 2016, 79, e33-e45.	1.3	73
45	H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep–wake regulatory neurons in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E368-77.	7.1	71
46	Chronic Corticosterone Administration Doseâ€Dependently Modulates Aβ _(1–42) â^' and NMDAâ€Induced Neurodegeneration in Rat Magnocellular Nucleus Basalis. Journal of Neuroendocrinology, 2000, 12, 486-494.	2.6	70
47	Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nature Communications, 2014, 5, 4421.	12.8	70
48	Complementary distribution of type 1 cannabinoid receptors and vesicular glutamate transporter 3 in basal forebrain suggests inputâ€specific retrograde signalling by cholinergic neurons. European Journal of Neuroscience, 2003, 18, 1979-1992.	2.6	69
49	Secretagogin is a Ca ²⁺ -binding protein specifying subpopulations of telencephalic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22492-22497.	7.1	69
50	Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Science Signaling, 2018, 11, .	3.6	69
51	N-MethylAspartate Receptor Antagonist MK-801 and Radical Scavengers Protect Cholinergic Nucleus Basalis Neurons against β-Amyloid Neurotoxicity. Neurobiology of Disease, 1999, 6, 109-121.	4.4	68
52	Identification of ALK in Thinness. Cell, 2020, 181, 1246-1262.e22.	28.9	66
53	Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice. Journal of Neuroscience, 2017, 37, 8166-8179.	3.6	63
54	β-Amyloid(1–42) affects cholinergic but not parvalbumin-containing neurons in the septal complex of the rat. Brain Research, 1995, 698, 270-274.	2.2	62

#	Article	IF	CITATIONS
55	Cholinotoxic effects of β-amyloid(1–42) peptide on cortical projections of the rat nucleus basalis magnocellularis. Brain Research, 1995, 695, 71-75.	2.2	61
56	CB1 Cannabinoid Receptors Couple to Focal Adhesion Kinase to Control Insulin Release. Journal of Biological Chemistry, 2013, 288, 32685-32699.	3.4	61
57	Endogenous GABAA receptor activity suppresses glioma growth. Oncogene, 2017, 36, 777-786.	5.9	60
58	The renaissance of Ca2+-binding proteins in the nervous system: secretagogin takes center stage. Cellular Signalling, 2012, 24, 378-387.	3.6	59
59	Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6686-E6695.	7.1	56
60	Increased amyloid precursor protein expression and serotonergic sprouting following excitotoxic lesion of the rat magnocellular nucleus basalis: neuroprotection by Ca2+ antagonist nimodipine. Neuroscience, 2000, 101, 101-114.	2.3	54
61	Thioflavins released from nanoparticles target fibrillar amyloid \hat{I}^2 in the hippocampus of APP/PS1 transgenic mice. International Journal of Developmental Neuroscience, 2006, 24, 195-201.	1.6	54
62	A <scp>TRPV</scp> 1â€toâ€secretagogin regulatory axis controls pancreatic βâ€cell survival by modulating protein turnover. EMBO Journal, 2017, 36, 2107-2125.	7.8	52
63	Electron microscopic analysis of nanoparticles delivering thioflavin-T after intrahippocampal injection in mouse: implications for targeting β-amyloid in Alzheimer's disease. Neuroscience Letters, 2003, 338, 174-176.	2.1	51
64	β-Amyloid-Induced Cholinergic Denervation Correlates with Enhanced Nitric Oxide Synthase Activity in Rat Cerebral Cortex: Reversal by NMDA Receptor Blockade. Brain Research Bulletin, 1998, 45, 405-411.	3.0	49
65	Protracted brain development in a rodent model of extreme longevity. Scientific Reports, 2015, 5, 11592.	3.3	48
66	Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1149-58.	7.1	47
67	Functional Recovery of Cholinergic Basal Forebrain Neurons under Disease Conditions: Old Problems, New Solutions?. Reviews in the Neurosciences, 2002, 13, 95-165.	2.9	45
68	Presynaptic adenosine <scp>A_{2A}</scp> receptors dampen cannabinoid <scp>CB</scp> ₁ receptorâ€mediated inhibition of corticostriatal glutamatergic transmission. British Journal of Pharmacology, 2015, 172, 1074-1086.	5.4	45
69	beta-Amyloid Excitotoxicity in Rat Magnocellular Nucleus Basalis: Effect of Cortical Deafferentation on Cerebral Blood Flow Regulation and Implications for Alzheimer's Disease. Annals of the New York Academy of Sciences, 2000, 903, 374-386.	3.8	44
70	Oral post-lesion administration of 5-HT1A receptor agonist repinotan hydrochloride (BAY x 3702) attenuates NMDA-induced delayed neuronal death in rat magnocellular nucleus basalis. Neuroscience, 2001, 108, 629-642.	2.3	44
71	Brain-derived neurotrophic factor selectively regulates dendritogenesis of parvalbumin-containing interneurons in the main olfactory bulb through the PLCγ pathway. Journal of Neurobiology, 2006, 66, 1437-1451.	3.6	44
72	Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6185-94.	7.1	44

#	Article	IF	CITATIONS
73	Complementary distribution of vesicular glutamate transporters 1 and 2 in the nucleus accumbens of rat: Relationship to calretinin-containing extrinsic innervation and calbindin-immunoreactive neurons. Journal of Comparative Neurology, 2003, 465, 1-10.	1.6	43
74	A Neuro-hormonal Circuit for Paternal Behavior Controlled by a Hypothalamic Network Oscillation. Cell, 2020, 182, 960-975.e15.	28.9	43
75	Region-specific generation of functional neurons from naive embryonic stem cells in adult brain. Journal of Neurochemistry, 2004, 88, 1229-1239.	3.9	41
76	Nerve growth factor scales endocannabinoid signaling by regulating monoacylglycerol lipase turnover in developing cholinergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1935-1940.	7.1	41
77	Cracking Down on Inhibition: Selective Removal of GABAergic Interneurons from Hippocampal Networks. Journal of Neuroscience, 2012, 32, 1989-2001.	3.6	40
78	β-Amyloid(1-42)-Induced Cholinergic Lesions in Rat Nucleus Basalis Bidirectionally Modulate Serotonergic Innervation of the Basal Forebrain and Cerebral Cortex. Neurobiology of Disease, 2001, 8, 667-678.	4.4	39
79	17β-Estradiol enhances cortical cholinergic innervation and preserves synaptic density following excitotoxic lesions to the rat nucleus basalis magnocellularis. Neuroscience, 2002, 110, 489-504.	2.3	36
80	[125I]SD-7015 reveals fine modalities of CB1 cannabinoid receptor density in the prefrontal cortex during progression of Alzheimer's disease. Neurochemistry International, 2012, 60, 286-291.	3.8	36
81	Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease. Acta Neuropathologica, 2015, 129, 541-563.	7.7	36
82	Secretagogin is a Ca ²⁺ â€binding protein identifying prospective extended amygdala neurons in the developing mammalian telencephalon. European Journal of Neuroscience, 2010, 31, 2166-2177.	2.6	34
83	Secretagogin is Expressed in Sensory CCRP Neurons and in Spinal Cord of Mouse and Complements other Calcium-Binding Proteins, with a Note on Rat and Human. Molecular Pain, 2012, 8, 1744-8069-8-80.	2.1	34
84	Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus. Journal of Endocrinology, 2017, 232, R161-R172.	2.6	34
85	The synaptic split of SNAP-25: Different roles in glutamatergic and GABAergic neurons?. Neuroscience, 2009, 158, 223-230.	2.3	33
86	Cannabinoid receptor-interacting protein Crip1a modulates CB1 receptor signaling in mouse hippocampus. Brain Structure and Function, 2016, 221, 2061-2074.	2.3	33
87	Hypothalamic <scp>CNTF</scp> volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO Journal, 2018, 37, .	7.8	33
88	Dendritic Release of Retrograde Messengers Controls Synaptic Transmission in Local Neocortical Networks. Neuroscientist, 2005, 11, 334-344.	3.5	32
89	Three-dimensional Imaging Reveals New Compartments and Structural Adaptations in Odontoblasts. Journal of Dental Research, 2015, 94, 945-954.	5.2	32
90	Inhibition of neuronal nitric oxide synthase-mediated activation of poly(ADP-ribose) polymerase in traumatic brain injury: neuroprotection by 3-aminobenzamide. Neuroscience, 2003, 121, 983-990.	2.3	31

#	Article	IF	CITATIONS
91	(S)Pot on Mitochondria: Cannabinoids Disrupt Cellular Respiration to Limit Neuronal Activity. Cell Metabolism, 2017, 25, 8-10.	16.2	31
92	Unified Classification of Molecular, Network, and Endocrine Features of Hypothalamic Neurons. Annual Review of Neuroscience, 2019, 42, 1-26.	10.7	30
93	Replacing SNAP-25b with SNAP-25a expression results in metabolic disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4326-35.	7.1	29
94	Rabbit forebrain cholinergic system: Morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus. Journal of Comparative Neurology, 2003, 460, 597-611.	1.6	28
95	Life-long epigenetic programming of cortical architecture by maternal †Western' diet during pregnancy. Molecular Psychiatry, 2020, 25, 22-36.	7.9	28
96	Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2006-E2015.	7.1	27
97	The Glutamine Transporter Slc38a1 Regulates GABAergic Neurotransmission and Synaptic Plasticity. Cerebral Cortex, 2019, 29, 5166-5179.	2.9	27
98	Pathological Peptide Folding in Alzheimers Disease and Other Conformational Disorders. Current Medicinal Chemistry, 2002, 9, 1763-1780.	2.4	27
99	Redistribution of CB1 cannabinoid receptors during evolution of cholinergic basal forebrain territories and their cortical projection areas: A comparison between the gray mouse lemur (Microcebus murinus, primates) and rat. Neuroscience, 2005, 135, 595-609.	2.3	24
100	Clusters of secretagogin-expressing neurons in the aged human olfactory tract lack terminal differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6259-6264.	7.1	24
101	Endocannabinoid signals in the developmental programming of delayed-onset neuropsychiatric and metabolic illnesses. Biochemical Society Transactions, 2013, 41, 1569-1576.	3.4	24
102	Diacylglycerol lipase Î \pm manipulation reveals developmental roles for intercellular endocannabinoid signaling. Scientific Reports, 2013, 3, 2093.	3.3	23
103	Propionyl-IIGL tetrapeptide antagonizes β-amyloid excitotoxicity in rat nucleus basalis. NeuroReport, 1999, 10, 1693-1698.	1.2	22
104	Short-term consequences of N-methyl-D-aspartate excitotoxicity in rat magnocellular nucleus basalis: effects on in vivo labelling of cholinergic neurons. Neuroscience, 2001, 108, 611-627.	2.3	22
105	Turning the heterogeneous into homogeneous: studies on selectively isolated GABAergic interneuron subsets. International Journal of Developmental Neuroscience, 2004, 22, 533-543.	1.6	20
106	Galantamine-induced behavioral recovery after sublethal excitotoxic lesions to the rat medial septum. Behavioural Brain Research, 2005, 163, 33-41.	2.2	20
107	The decrease of dopamine D2/D3 receptor densities in the putamen and nucleus caudatus goes parallel with maintained levels of CB1 cannabinoid receptors in Parkinson's disease: A preliminary autoradiographic study with the selective dopamine D2/D3 antagonist [3H]raclopride and the novel CB1 inverse agonist [125]SD7015. Brain Research Bulletin, 2012, 87, 504-510.	3.0	20
108	Hypothalamic cell diversity: non-neuronal codes for long-distance volume transmission by neuropeptides. Current Opinion in Neurobiology, 2019, 56, 16-23.	4.2	20

#	Article	IF	CITATIONS
109	Functional Differentiation of Cholecystokinin-Containing Interneurons Destined for the Cerebral Cortex. Cerebral Cortex, 2017, 27, bhw094.	2.9	19
110	Secretagogin protects Pdx1 from proteasomal degradation to control a transcriptional program required for Î ² cell specification. Molecular Metabolism, 2018, 14, 108-120.	6.5	19
111	Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Reports, 2021, 37, 109800.	6.4	19
112	Cortical cholinergic decline parallels the progression of Borna virus encephalitis. NeuroReport, 2001, 12, 3767-3772.	1.2	18
113	Effect of Corticosterone and Adrenalectomy on NMDAâ€Induced Cholinergic Cell Death in Rat Magnocellular Nucleus Basalis. Journal of Neuroendocrinology, 1997, 9, 713-720.	2.6	18
114	Neurotrophin-4 mediated TrkB activation reinforces morphine-induced analgesia. Nature Neuroscience, 2003, 6, 221-222.	14.8	18
115	Calpain activity contributes to the control of SNAP-25 levels in neurons. Molecular and Cellular Neurosciences, 2008, 39, 314-323.	2.2	18
116	Autoantibodies in autoimmune polyglandular syndrome type I patients react with major brain neurotransmitter systems. Journal of Comparative Neurology, 2009, 513, 1-20.	1.6	18
117	Post-lesion administration of 5-HT1A receptor agonist 8-OH-DPAT protects cholinergic nucleus basalis neurons against NMDA excitotoxicity. NeuroReport, 2003, 14, 57-60.	1.2	17
118	Vesicular glutamate transporter 3 (VGLUT3) identifies spatially segregated excitatory terminals in the rat substantia nigra. European Journal of Neuroscience, 2006, 23, 1063-1070.	2.6	17
119	A novel brain trauma model in the mouse: effects of dexamethasone treatment. Pflugers Archiv European Journal of Physiology, 2000, 441, 409-415.	2.8	16
120	Ca2+-binding protein NECAB2 facilitates inflammatory pain hypersensitivity. Journal of Clinical Investigation, 2018, 128, 3757-3768.	8.2	15
121	Disrupted <i>Cacna1c</i> gene expression perturbs spontaneous Ca ²⁺ activity causing abnormal brain development and increased anxiety. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
122	Neurotrophin-mediated neuroprotection by solid fetal telencephalic graft in middle cerebral artery occlusion: a preventive approach. Brain Research Bulletin, 1998, 47, 185-191.	3.0	14
123	Cutaneous lymphatic amyloid deposits in 'Hungarian-type' familial transthyretin amyloidosis: a case report. British Journal of Dermatology, 2002, 146, 674-679.	1.5	14
124	En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16336-16341.	7.1	14
125	Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord. Brain Structure and Function, 2016, 221, 3803-3823.	2.3	14
126	Secretagogin expression in the vertebrate brainstem with focus on the noradrenergic system and implications for Alzheimer's disease. Brain Structure and Function, 2019, 224, 2061-2078.	2.3	14

#	Article	IF	CITATIONS
127	Sticking out of the crowd: the molecular identity and development of cholecystokinin ontaining basket cells. Journal of Physiology, 2012, 590, 703-714.	2.9	13
128	Revival of Calcium-Binding Proteins for Neuromorphology: Secretagogin Typifies Distinct Cell Populations in the Avian Brain. Brain, Behavior and Evolution, 2014, 83, 82-92.	1.7	13
129	Nonsulfated cholecystokinins in cerebral neurons. Neuropeptides, 2016, 60, 37-44.	2.2	13
130	Chronic Ethanol Ingestion-Induced Changes in Open-Field Behavior and Oxidative Stress in the Rat. Pharmacology Biochemistry and Behavior, 1997, 58, 195-201.	2.9	12
131	Neonatal handling increases sensitivity to acute neurodegeneration in adult rats. Journal of Neurobiology, 2004, 60, 463-472.	3.6	12
132	Brain-wide genetic mapping identifies the indusium griseum as a prenatal target of pharmacologically unrelated psychostimulants. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25958-25967.	7.1	12
133	Adverse effects of î"9-tetrahydrocannabinol on neuronal bioenergetics during postnatal development. JCI Insight, 2020, 5, .	5.0	12
134	Distinct subsets of nucleus basalis neurons exhibit similar sensitivity to excitotoxicity. NeuroReport, 2002, 13, 767-772.	1.2	11
135	Lifeâ€long impairment of glucose homeostasis upon prenatal exposure to psychostimulants. EMBO Journal, 2020, 39, e100882.	7.8	11
136	Genetic Manipulation of sn-1-Diacylglycerol Lipase and CB ₁ Cannabinoid Receptor Gain-of-Function Uncover Neuronal 2-Linoleoyl Glycerol Signaling in <i>Drosophila melanogaster</i> . Cannabis and Cannabinoid Research, 2021, 6, 119-136.	2.9	11
137	GABAergic Terminals Are a Source of Galanin to Modulate Cholinergic Neuron Development in the Neonatal Forebrain. Cerebral Cortex, 2014, 24, 3277-3288.	2.9	10
138	The molecular interplay between endocannabinoid and neurotrophin signals in the nervous system and beyond. European Journal of Neuroscience, 2014, 39, 334-343.	2.6	10
139	Biological basis of cannabinoid medicines. Science, 2021, 374, 1449-1450.	12.6	10
140	Lack of presynaptic interaction between glucocorticoid and CB1 cannabinoid receptors in GABA- and glutamatergic terminals in the frontal cortex of laboratory rodents. Neurochemistry International, 2015, 90, 72-84.	3.8	9
141	Neuropathology of the Brainstem to Mechanistically Understand and to Treat Alzheimer's Disease. Journal of Clinical Medicine, 2021, 10, 1555.	2.4	9
142	Orexin neurons use endocannabinoids to break obesity-induced inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9625-9626.	7.1	8
143	GABAA receptor subunit deregulation in the hippocampus of human foetuses with Down syndrome. Brain Structure and Function, 2017, 223, 1501-1518.	2.3	8
144	A hypothalamic pathway for Augmentor α–controlled body weight regulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200476119.	7.1	8

#	Article	IF	CITATIONS
145	In vivo labeling of rabbit cholinergic basal forebrain neurons with fluorochromated antibodies. NeuroReport, 2002, 13, 1395-1398.	1.2	7
146	Gestational immune activation disrupts hypothalamic neurocircuits of maternal care behavior. Molecular Psychiatry, 2022, , .	7.9	7
147	CB1 Cannabinoid Receptors: Molecular Biology, Second Messenger Coupling and Polarized Trafficking in Neurons. , 2008, , 59-73.		6
148	HCN Channel Activity Balances Quiescence and Proliferation in Neural Stem Cells and Is a Selective Target for Neuroprotection During Cancer Treatment. Molecular Cancer Research, 2020, 18, 1522-1533.	3.4	6
149	Diversity matters: combinatorial information coding by GABAA receptor subunits during spatial learning and its allosteric modulation. Cellular Signalling, 2018, 50, 142-159.	3.6	5
150	Secretagogin marks amygdaloid PKCδ interneurons and modulates NMDA receptor availability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
151	Resolution Matters: Correlating Quantitative Proteomics and Nanoscaleâ€Precision Microscopy for Reconstructing Synapse Identity. Proteomics, 2018, 18, e1800139.	2.2	4
152	Novel insights into the spatial and temporal complexity of hypothalamic organization through precision methods allowing nanoscale resolution. Journal of Internal Medicine, 2018, 284, 568-580.	6.0	4
153	GPR55 controls functional differentiation of self-renewing epithelial progenitors for salivation. JCI Insight, 2019, 4, .	5.0	4
154	Physiological Rules of Endocannabinoid Action During Fetal and Neonatal Brain Development. Cannabis and Cannabinoid Research, 2021, 6, 381-388.	2.9	4
155	3Dâ€printed design of a stereotaxic adaptor for the precision targeting of brain structures in infant mice. European Journal of Neuroscience, 2022, 55, 725-732.	2.6	3
156	Neuronal heterogeneity in the paraventricular nucleus of the hypothalamus as revealed by single-cell RNA-seq. Current Opinion in Endocrine and Metabolic Research, 2022, 25, 100366.	1.4	3
157	Preclinical Establishment of a Divalent Vaccine against SARS-CoV-2. Vaccines, 2022, 10, 516.	4.4	2
158	HDAC9 links epigenetics to dendrite development (Commentary on Sugo <i>etÂal.</i>). European Journal of Neuroscience, 2010, 31, 1519-1520.	2.6	1
159	Neurotrophin and endocannabinoid interactions in the neurobiology of pain. European Journal of Neuroscience, 2014, 39, 331-333.	2.6	1
160	The p(l)ot thickens: cannabinoid receptors on astroglial mitochondria coordinate animal behaviors by regulating lactate availability for neurons. Signal Transduction and Targeted Therapy, 2020, 5, 189.	17.1	1
161	Chronic aluminum treatment results in aluminum deposits and affects Ml muscarinic receptors in rat brain. Neurobiology (Budapest, Hungary), 1996, 4, 35-43.	0.2	1
162	Novelty-induced behavioral dysfunctioning correlates with the loss of Ca2+ homeostasis after chronic ethanol intoxication. Neurobiology (Budapest, Hungary), 1997, 5, 87-90.	0.2	1

#	Article	IF	CITATIONS
163	Autoantibodies in autoimmune polyglandular syndrome type I patients react with major brain neurotransmitter systems. Journal of Comparative Neurology, 2009, 513, spc1-spc1.	1.6	0
164	Autoantibodies in autoimmune polyglandular syndrome type I patients react with major brain neurotransmitter systems. Journal of Comparative Neurology, 2009, 513, spc1-spc1.	1.6	0
165	Molecular mechanisms of neuronal specification. European Journal of Neuroscience, 2011, 34, 1513-1515.	2.6	Ο
166	S.12.01 Miswiring the brain: delta-9-tetrahydrocannabinol disrupts cortical connectivity by inducing SCG10 degradation. European Neuropsychopharmacology, 2014, 24, S125-S126.	0.7	0
167	Endocannabinoids and fetal organ development: a conflict of misconstrued concepts and policies?. Future Neurology, 2015, 10, 75-78.	0.5	0
168	Endocannabinoid Functions in Neurogenesis, Neuronal Migration, and Specification. , 2008, , 237-256.		0