Kang-Le Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572185/publications.pdf

Version: 2024-02-01

38	844	19	28
papers	citations	h-index	g-index
38	38	38	190 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	New variational theory for coupled nonlinear fractal SchrĶdinger system. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 589-597.	2.8	21
2	NOVEL APPROACH FOR FRACTAL NONLINEAR OSCILLATORS WITH DISCONTINUITIES BY FOURIER SERIES. Fractals, 2022, 30, .	3.7	27
3	Exact solitary wave solution for fractal shallow water wave model by He's variational method. Modern Physics Letters B, 2022, 36, .	1.9	24
4	FRACTAL VARIATIONAL PRINCIPLES FOR TWO DIFFERENT TYPES OF FRACTAL PLASMA MODELS WITH VARIABLE COEFFICIENTS. Fractals, 2022, 30, .	3.7	15
5	A NOVEL VARIATIONAL PERSPECTIVE TO FRACTAL WAVE EQUATIONS WITH VARIABLE COEFFICIENTS. Fractals, 2022, 30, .	3.7	1
6	Solitary wave solution of nonlinear Bogoyavlenskii system by variational analysis method. International Journal of Modern Physics B, 2022, 36, .	2.0	10
7	FRACTAL SOLITARY WAVE SOLUTIONS FOR FRACTAL NONLINEAR DISPERSIVE BOUSSINESQ-LIKE MODELS. Fractals, 2022, 30, .	3.7	21
8	EXACT TRAVELING WAVE SOLUTIONS FOR THE LOCAL FRACTIONAL KADOMTSOV–PETVIASHVILI–BENJAMIN–BONA–MAHONY MODEL BY VARIATIONAL PERSPECTIVE. Fracta 2022, 30, .	ls3.7	13
9	A NOVEL PERSPECTIVE TO THE LOCAL FRACTIONAL BIDIRECTIONAL WAVE MODEL ON CANTOR SETS. Fractals, 2022, 30, .	3.7	18
10	A powerful and simple frequency formula to nonlinear fractal oscillators. Journal of Low Frequency Noise Vibration and Active Control, 2021, 40, 1373-1379.	2.9	32
11	He's frequency formulation for fractal nonlinear oscillator arising in a microgravity space. Numerical Methods for Partial Differential Equations, 2021, 37, 1374-1384.	3.6	64
12	A new fractal model for the soliton motion in a microgravity space. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 442-451.	2.8	41
13	VARIATIONAL PRINCIPLES FOR FRACTAL WHITHAM–BROER–KAUP EQUATIONS IN SHALLOW WATER. Fractals 2021, 29, 2150028.	^S ,3.7	26
14	Fractal approach to explanation of silkworm cocoon's biomechanism. Thermal Science, 2021, 25, 1501-1507.	1.1	0
15	A NEW FRACTAL TRANSFORM FREQUENCY FORMULATION FOR FRACTAL NONLINEAR OSCILLATORS. Fractals, 2021, 29, 2150062.	3.7	26
16	A NOVEL APPROACH FOR FRACTAL BURGERS–BBM EQUATION AND ITS VARIATIONAL PRINCIPLE. Fractals, 2021, 29, 2150059.	3.7	20
17	A NOVEL PERSPECTIVE FOR THE FRACTAL SCHR×DINGER EQUATION. Fractals, 2021, 29, 2150093.	3.7	19
18	A study of the fractal foam drainage model in a microgravity space. Mathematical Methods in the Applied Sciences, 2021, 44, 10530-10540.	2.3	39

#	Article	IF	Citations
19	A NOVEL VARIATIONAL APPROACH FOR FRACTAL GINZBURG–LANDAU EQUATION. Fractals, 2021, 29, .	3.7	2
20	NEW ANALYTICAL APPROACH FOR NONLINEAR FRACTAL K(p,q) MODEL. Fractals, 2021, 29, 2150116.	3.7	6
21	A NEW PERSPECTIVE FOR TWO DIFFERENT TYPES OF FRACTAL ZAKHAROV–KUZNETSOV MODELS. Fractals, 2021, 29, 2150168.	3.7	2
22	Variational principle and its fractal approximate solution for fractal Lane-Emden equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 2279-2287.	2.8	5
23	A new analysis for Klein-Gordon model with local fractional derivative. AEJ - Alexandria Engineering Journal, 2020, 59, 3309-3313.	6.4	29
24	Effect of Fangzhu's nanoscale surface morphology on water collection. Mathematical Methods in the Applied Sciences, 2020, , .	2.3	28
25	Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system. Mathematical Methods in the Applied Sciences, 2020, , .	2.3	25
26	A FRACTAL VARIATIONAL PRINCIPLE FOR THE TELEGRAPH EQUATION WITH FRACTAL DERIVATIVES. Fractals, 2020, 28, 2050058.	3.7	38
27	He's fractional derivative for the evolution equation. Thermal Science, 2020, 24, 2507-2513.	1.1	16
28	Conservation laws for partial differential equations based on the polynomial characteristic method. Thermal Science, 2020, 24, 2529-2534.	1.1	9
29	Analytical solution for non-linear local fractional Bratu-type equation in a fractal space. Thermal Science, 2020, 24, 3941-3947.	1.1	1
30	Polynomial characteristic method an easy approach to lie symmetry. Thermal Science, 2020, 24, 2629-2635.	1.1	7
31	A REMARK ON WANG'S FRACTAL VARIATIONAL PRINCIPLE. Fractals, 2019, 27, 1950134.	3.7	80
32	PHYSICAL INSIGHT OF LOCAL FRACTIONAL CALCULUS AND ITS APPLICATION TO FRACTIONAL KDV–BURGERS–KURAMOTO EQUATION. Fractals, 2019, 27, 1950122.	3.7	85
33	A new approximate analytical method for a system of fractional differential equations. Thermal Science, 2019, 23, 853-858.	1.1	3
34	Local fractional derivative: A powerful tool to model the fractal differential equation. Thermal Science, 2019, 23, 1703-1706.	1.1	1
35	Numerical method for fractional Zakharov-Kuznetsov equations with He's fractional derivative. Thermal Science, 2019, 23, 2163-2170.	1.1	31
36	Conformable fractional derivative and its application to fractional Klein-Gordon equation. Thermal Science, 2019, 23, 3745-3749.	1.1	1

#	Article	IF	CITATION
37	A modification of the reduced differential transform method for fractional calculus. Thermal Science, 2018, 22, 1871-1875.	1.1	48
38	A novel perspective to the local fractional Zakharov–Kuznetsovâ€modified equal width dynamical model on Cantor sets. Mathematical Methods in the Applied Sciences, 0, , .	2.3	10