
Kang-Le Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572185/publications.pdf Version: 2024-02-01

KANC-LE WANC

#	Article	IF	CITATIONS
1	PHYSICAL INSIGHT OF LOCAL FRACTIONAL CALCULUS AND ITS APPLICATION TO FRACTIONAL KDV–BURGERS–KURAMOTO EQUATION. Fractals, 2019, 27, 1950122.	3.7	85
2	A REMARK ON WANG'S FRACTAL VARIATIONAL PRINCIPLE. Fractals, 2019, 27, 1950134.	3.7	80
3	He's frequency formulation for fractal nonlinear oscillator arising in a microgravity space. Numerical Methods for Partial Differential Equations, 2021, 37, 1374-1384.	3.6	64
4	A modification of the reduced differential transform method for fractional calculus. Thermal Science, 2018, 22, 1871-1875.	1.1	48
5	A new fractal model for the soliton motion in a microgravity space. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 442-451.	2.8	41
6	A study of the fractal foam drainage model in a microgravity space. Mathematical Methods in the Applied Sciences, 2021, 44, 10530-10540.	2.3	39
7	A FRACTAL VARIATIONAL PRINCIPLE FOR THE TELEGRAPH EQUATION WITH FRACTAL DERIVATIVES. Fractals, 2020, 28, 2050058.	3.7	38
8	A powerful and simple frequency formula to nonlinear fractal oscillators. Journal of Low Frequency Noise Vibration and Active Control, 2021, 40, 1373-1379.	2.9	32
9	Numerical method for fractional Zakharov-Kuznetsov equations with He's fractional derivative. Thermal Science, 2019, 23, 2163-2170.	1.1	31
10	A new analysis for Klein-Gordon model with local fractional derivative. AEJ - Alexandria Engineering Journal, 2020, 59, 3309-3313.	6.4	29
11	Effect of Fangzhu's nanoscale surface morphology on water collection. Mathematical Methods in the Applied Sciences, 2020, , .	2.3	28
12	NOVEL APPROACH FOR FRACTAL NONLINEAR OSCILLATORS WITH DISCONTINUITIES BY FOURIER SERIES. Fractals, 2022, 30, .	3.7	27
13	VARIATIONAL PRINCIPLES FOR FRACTAL WHITHAM–BROER–KAUP EQUATIONS IN SHALLOW WATER. Fractal 2021, 29, 2150028.	^{S,} 3.7	26
14	A NEW FRACTAL TRANSFORM FREQUENCY FORMULATION FOR FRACTAL NONLINEAR OSCILLATORS. Fractals, 2021, 29, 2150062.	3.7	26
15	Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system. Mathematical Methods in the Applied Sciences, 2020, , .	2.3	25
16	Exact solitary wave solution for fractal shallow water wave model by He's variational method. Modern Physics Letters B, 2022, 36, .	1.9	24
17	New variational theory for coupled nonlinear fractal Schrödinger system. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 589-597.	2.8	21
18	FRACTAL SOLITARY WAVE SOLUTIONS FOR FRACTAL NONLINEAR DISPERSIVE BOUSSINESQ-LIKE MODELS. Fractals, 2022, 30, .	3.7	21

KANG-LE WANG

#	Article	IF	CITATIONS
19	A NOVEL APPROACH FOR FRACTAL BURGERS–BBM EQUATION AND ITS VARIATIONAL PRINCIPLE. Fractals, 2021, 29, 2150059.	3.7	20
20	A NOVEL PERSPECTIVE FOR THE FRACTAL SCHRÖDINGER EQUATION. Fractals, 2021, 29, 2150093.	3.7	19
21	A NOVEL PERSPECTIVE TO THE LOCAL FRACTIONAL BIDIRECTIONAL WAVE MODEL ON CANTOR SETS. Fractals, 2022, 30, .	3.7	18
22	He's fractional derivative for the evolution equation. Thermal Science, 2020, 24, 2507-2513.	1.1	16
23	FRACTAL VARIATIONAL PRINCIPLES FOR TWO DIFFERENT TYPES OF FRACTAL PLASMA MODELS WITH VARIABLE COEFFICIENTS. Fractals, 2022, 30, .	3.7	15
24	EXACT TRAVELING WAVE SOLUTIONS FOR THE LOCAL FRACTIONAL KADOMTSOV–PETVIASHVILI–BENJAMIN–BONA–MAHONY MODEL BY VARIATIONAL PERSPECTIVE. Fracta 2022, 30, .	als 3. 7	13
25	Solitary wave solution of nonlinear Bogoyavlenskii system by variational analysis method. International Journal of Modern Physics B, 2022, 36, .	2.0	10
26	A novel perspective to the local fractional Zakharov–Kuznetsovâ€modified equal width dynamical model on Cantor sets. Mathematical Methods in the Applied Sciences, 0, , .	2.3	10
27	Conservation laws for partial differential equations based on the polynomial characteristic method. Thermal Science, 2020, 24, 2529-2534.	1.1	9
28	Polynomial characteristic method an easy approach to lie symmetry. Thermal Science, 2020, 24, 2629-2635.	1.1	7
29	NEW ANALYTICAL APPROACH FOR NONLINEAR FRACTAL K(p,q) MODEL. Fractals, 2021, 29, 2150116.	3.7	6
30	Variational principle and its fractal approximate solution for fractal Lane-Emden equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 2279-2287.	2.8	5
31	A new approximate analytical method for a system of fractional differential equations. Thermal Science, 2019, 23, 853-858.	1.1	3
32	A NOVEL VARIATIONAL APPROACH FOR FRACTAL GINZBURG–LANDAU EQUATION. Fractals, 2021, 29, .	3.7	2
33	A NEW PERSPECTIVE FOR TWO DIFFERENT TYPES OF FRACTAL ZAKHAROV–KUZNETSOV MODELS. Fractals, 2021, 29, 2150168.	3.7	2
34	Local fractional derivative: A powerful tool to model the fractal differential equation. Thermal Science, 2019, 23, 1703-1706.	1.1	1
35	Conformable fractional derivative and its application to fractional Klein-Gordon equation. Thermal Science, 2019, 23, 3745-3749.	1.1	1
36	Analytical solution for non-linear local fractional Bratu-type equation in a fractal space. Thermal Science, 2020, 24, 3941-3947.	1.1	1

#	Article	IF	CITATIONS
37	A NOVEL VARIATIONAL PERSPECTIVE TO FRACTAL WAVE EQUATIONS WITH VARIABLE COEFFICIENTS. Fractals, 2022, 30, .	3.7	1
38	Fractal approach to explanation of silkworm cocoon's biomechanism. Thermal Science, 2021, 25, 1501-1507.	1.1	0