Lorenzo Miguel Pastrana Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 2011, 86, 1137-1144.	5.1	325
2	Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering, 2010, 101, 349-356.	2.7	217
3	Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloids, 2018, 81, 442-448.	5.6	180
4	Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids, 2018, 77, 8-16.	5.6	134
5	Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.). LWT - Food Science and Technology, 2011, 44, 1793-1801.	2.5	115
6	Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 594-614.	5.9	108
7	Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. Carbohydrate Polymers, 2018, 192, 327-336.	5.1	108
8	Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food and Chemical Toxicology, 2019, 134, 110814.	1.8	104
9	Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties. Food Research International, 2019, 116, 1298-1305.	2.9	96
10	Oleogels for development of health-promoting food products. Food Science and Human Wellness, 2020, 9, 31-39.	2.2	96
11	Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. International Journal of Food Microbiology, 2001, 70, 267-281.	2.1	95
12	Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. Journal of the Science of Food and Agriculture, 2020, 100, 218-224.	1.7	89
13	Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food Research International, 2017, 96, 161-170.	2.9	87
14	Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Critical Reviews in Food Science and Nutrition, 2017, 57, 1377-1393.	5.4	83
15	Strategy towards Replacing Pork Backfat with a Linseed Oleogel in Frankfurter Sausages and Its Evaluation on Physicochemical, Nutritional, and Sensory Characteristics. Foods, 2019, 8, 366.	1.9	80
16	3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocolloids, 2020, 107, 105893.	5.6	76
17	Integral Valorization of Pineapple (Ananas comosus L.) By-Products through a Green Chemistry Approach towards Added Value Ingredients. Foods, 2020, 9, 60.	1.9	69
18	Reactivity of Pure Candida rugosa Lipase Isoenzymes (Lip1, Lip2, and Lip3) in Aqueous and Organic Media. Influence of the Isoenzymatic Profile on the Lipase Performance in Organic Media. Biotechnology Progress, 2008, 20, 65-73.	1.3	67

#	Article	IF	CITATIONS
19	Extraction of sulfated polysaccharides by autohydrolysis of brown seaweed Fucus vesiculosus. Journal of Applied Phycology, 2013, 25, 31-39.	1.5	67
20	Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Marine Drugs, 2020, 18, 644.	2.2	66
21	Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food and Bioprocess Technology, 2016, 9, 1874-1884.	2.6	65
22	Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: Partial purification and preliminary biochemical characterisation. Journal of Biotechnology, 2005, 117, 233-241.	1.9	63
23	Oleogel-Based Systems for the Delivery of Bioactive Compounds in Foods. Gels, 2021, 7, 86.	2.1	63
24	Temperature- and pH-Sensitive Nanohydrogels of Poly(N-Isopropylacrylamide) for Food Packaging Applications: Modelling the Swelling-Collapse Behaviour. PLoS ONE, 2014, 9, e87190.	1.1	59
25	Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresource Technology, 2009, 100, 3630-3637.	4.8	57
26	Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes. Gels, 2020, 6, 17.	2.1	57
27	Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International Journal of Food Microbiology, 2019, 291, 121-127.	2.1	56
28	Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chemistry, 2016, 198, 54-61.	4.2	55
29	Bacteriophages for Chronic Wound Treatment: From Traditional to Novel Delivery Systems. Viruses, 2020, 12, 235.	1.5	55
30	Carboxymethyl cellulose-based films: Effect of organosolv lignin incorporation on physicochemical and antioxidant properties. Journal of Food Engineering, 2020, 285, 110107.	2.7	55
31	Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chemical Papers, 2014, 68, .	1.0	54
32	Omegaâ€3 and Polyunsaturated Fatty Acidsâ€Enriched Hamburgers Using Sterolâ€Based Oleogels. European Journal of Lipid Science and Technology, 2019, 121, 1900111.	1.0	54
33	Modelling the influence of pH on the kinetics of both nisin and pediocin production and characterization of their functional properties. Process Biochemistry, 2002, 37, 1005-1015.	1.8	52
34	Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation. Journal of Biotechnology, 2000, 84, 163-174.	1.9	51
35	Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Food Chemistry, 2016, 198, 28-35.	4.2	51
36	Effects of Feeding of Two Potentially Probiotic Preparations from Lactic Acid Bacteria on the Performance and Faecal Microflora of Broiler Chickens. Scientific World Journal, The, 2012, 2012, 1-9.	0.8	50

#	Article	IF	CITATIONS
37	Creating functional nanostructures: Encapsulation of caffeine into α-lactalbumin nanotubes. Innovative Food Science and Emerging Technologies, 2017, 40, 10-17.	2.7	50
38	Nisin and pediocin production on mussel-processing waste supplemented with glucose and five nitrogen sources. Letters in Applied Microbiology, 2002, 34, 114-118.	1.0	47
39	Influence of pH drop on both nisin and pediocin production by Lactococcus lactis and Pediococcus acidilactici. Letters in Applied Microbiology, 2003, 37, 51-55.	1.0	46
40	Green synthesis of lignin nano- and micro-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment. International Journal of Biological Macromolecules, 2020, 163, 1798-1809.	3.6	46
41	Characterization of microbial biomasses and amylolytic preparations obtained from mussel processing waste treatment. Bioresource Technology, 1993, 43, 117-125.	4.8	45
42	Amylase production by solid state culture of Aspergillus oryzae on polyurethane foams. Some mechanistic approaches from an empirical model. Process Biochemistry, 1997, 32, 35-42.	1.8	44
43	Lipolytic enzyme production by Thermus thermophilus HB27 in a stirred tank bioreactor. Biochemical Engineering Journal, 2005, 26, 95-99.	1.8	44
44	Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose. Carbohydrate Polymers, 2017, 174, 1181-1191.	5.1	44
45	Fungal fucoidanase production by solid-state fermentation in a rotating drum bioreactor using algal biomass as substrate. Food and Bioproducts Processing, 2013, 91, 587-594.	1.8	43
46	Methodologies to Assess the Biodegradability of Bio-Based Polymers—Current Knowledge and Existing Gaps. Polymers, 2022, 14, 1359.	2.0	43
47	Enhanced nisin and pediocin production on whey supplemented with different nitrogen sources. Biotechnology Letters, 2001, 23, 609-612.	1.1	42
48	Fucoidan-Degrading Fungal Strains: Screening, Morphometric Evaluation, and Influence of Medium Composition. Applied Biochemistry and Biotechnology, 2010, 162, 2177-2188.	1.4	42
49	Entrapment of a phage cocktail and cinnamaldehyde on sodium alginate emulsion-based films to fight food contamination by Escherichia coli and Salmonella Enteritidis. Food Research International, 2020, 128, 108791.	2.9	42
50	Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. Food Engineering Reviews, 2015, 7, 491-513.	3.1	41
51	Impact of functional flours from pineapple by-products on human intestinal microbiota. Journal of Functional Foods, 2020, 67, 103830.	1.6	40
52	Sterolâ€based oleogels' characterization envisioning food applications. Journal of the Science of Food and Agriculture, 2019, 99, 3318-3325.	1.7	39
53	Valorization of Agricultural Lignocellulosic Plant Byproducts through Enzymatic and Enzyme-Assisted Extraction of High-Value-Added Compounds: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 13112-13125.	3.2	39
54	Lipases and Esterases from Extremophiles: Overview and Case Example of the Production and Purification of an Esterase from Thermus thermophilus HB27. Methods in Molecular Biology, 2012, 861, 239-266.	0.4	38

#	Article	IF	CITATIONS
55	Impact of <i>in vitro</i> gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of <i>Vitis vinifera</i> L. cv. <i>Syrah</i> grape pomace extract. Food and Function, 2019, 10, 1856-1869.	2.1	38
56	Characterisation of β-lactoglobulin nanoparticles and their binding to caffeine. Food Hydrocolloids, 2017, 71, 85-93.	5.6	37
57	Electrosprayed whey protein-based nanocapsules for β-carotene encapsulation. Food Chemistry, 2020, 314, 126157.	4.2	36
58	Sensorial Perception of Astringency: Oral Mechanisms and Current Analysis Methods. Foods, 2020, 9, 1124.	1.9	36
59	Printability, microstructure, and flow dynamics of phase-separated edible 3D inks. Food Hydrocolloids, 2020, 109, 106120.	5.6	36
60	Depuration and valuation of mussel-processing wastes. Characterization of amylolytic postincubates from different species grown on an effluent. Bioresource Technology, 1992, 42, 133-140.	4.8	35
61	Production of Thermostable Lipolytic Activity by Thermus Species. Biotechnology Progress, 2008, 21, 1198-1205.	1.3	35
62	Quantification of intra- and extra-cellular thermophilic lipase/esterase production by Thermus sp Biotechnology Letters, 2004, 26, 705-708.	1.1	34
63	A mathematical model for glucose oxidase kinetics, including inhibitory, deactivant and diffusional effects, and their interactions. Enzyme and Microbial Technology, 2004, 34, 513-522.	1.6	34
64	Modelling the fed-batch production of pediocin using mussel processing wastes. Process Biochemistry, 2005, 40, 1071-1083.	1.8	34
65	Preparation and characterization of nanoparticulate poly(<i>N</i> â€isopropylacryl―amide) hydrogel for the controlled release of antiâ€tumour drugs. Polymer International, 2008, 57, 1215-1225.	1.6	34
66	Use of Poly(Nâ€isopropylacrylamide) Nanohydrogels for the Controlled Release of Pimaricin in Active Packaging. Journal of Food Science, 2012, 77, N21-8.	1.5	34
67	Production of Hyaluronic Acid by Streptococcus zooepidemicus on Protein Substrates Obtained from Scyliorhinus canicula Discards. Marine Drugs, 2015, 13, 6537-6549.	2.2	34
68	Lactoferrin-based nanoparticles as a vehicle for iron in food applications – Development and release profile. Food Research International, 2016, 90, 16-24.	2.9	34
69	Escherichia coli and Salmonella Enteritidis dual-species biofilms: interspecies interactions and antibiofilm efficacy of phages. Scientific Reports, 2019, 9, 18183.	1.6	34
70	Bacterial cellulose/cashew gum films as probiotic carriers. LWT - Food Science and Technology, 2020, 130, 109699.	2.5	34
71	Lactoferrin-based nanoemulsions to improve the physical and chemical stability of omega-3 fatty acids. Food and Function, 2020, 11, 1966-1981.	2.1	34
72	Diauxic production of glucose oxidase by Aspergillus niger in submerged culture. Enzyme and Microbial Technology, 2002, 31, 615-620.	1.6	33

#	Article	IF	CITATIONS
73	Overall quality properties in pressurized kiwi purée: Microbial, physicochemical, nutritive and sensory tests during refrigerated storage. Innovative Food Science and Emerging Technologies, 2013, 20, 64-72.	2.7	33
74	Protein-Based Nanostructures for Food Applications. Gels, 2019, 5, 9.	2.1	33
75	Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydrate Polymers, 2017, 174, 262-272.	5.1	32
76	Thermodynamic, rheological and structural properties of edible oils structured with LMOGs: Influence of gelator and oil phase. Food Structure, 2018, 16, 50-58.	2.3	32
77	Microbial production of hyaluronic acid from agro-industrial by-products: Molasses and corn steep liquor. Biochemical Engineering Journal, 2017, 117, 181-187.	1.8	31
78	Optimization of bromelain isolation from pineapple byproducts by polysaccharide complex formation. Food Hydrocolloids, 2019, 87, 792-804.	5.6	31
79	Enhancement and inhibition effects on the corneal permeability of timolol maleate: Polymers, cyclodextrins and chelating agents. International Journal of Pharmaceutics, 2017, 529, 168-177.	2.6	30
80	Antimicrobial Activity of Nisin Adsorbed to Surfaces Commonly Used in the Food Industry. Journal of Food Protection, 2005, 68, 1012-1019.	0.8	29
81	Electrospun Active Biopapers of Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Short-Term and Long-Term Antimicrobial Performance. Nanomaterials, 2020, 10, 506.	1.9	29
82	Interactions affecting gibberellic acid production in solid-state culture: A factorial study. Enzyme and Microbial Technology, 1995, 17, 784-790.	1.6	27
83	Evaluation of two bacteriocin-producing probiotic lactic acid bacteria as inoculants for controlling Listeria monocytogenes in grass and maize silages. Animal Feed Science and Technology, 2012, 175, 137-149.	1.1	26
84	Development of Active and Nanotechnology-based Smart Edible Packaging Systems: Physical–chemical Characterization. Food and Bioprocess Technology, 2014, 7, 1472-1482.	2.6	26
85	Nanotechnology in Food Packaging: Opportunities and Challenges. , 2018, , 1-11.		26
86	Fed-batch pediocin production on whey using different feeding media. Enzyme and Microbial Technology, 2007, 41, 397-406.	1.6	25
87	Heterologous expression of an esterase from Thermus thermophilus HB27 in Saccharomyces cerevisiae. Journal of Biotechnology, 2010, 145, 226-232.	1.9	25
88	Pediocin SA-1: A selective bacteriocin for controlling Listeria monocytogenes in maize silages. Journal of Dairy Science, 2016, 99, 8070-8080.	1.4	25
89	Tamarind Trypsin Inhibitor in Chitosan–Whey Protein Nanoparticles Reduces Fasting Blood Glucose Levels without Compromising Insulinemia: A Preclinical Study. Nutrients, 2019, 11, 2770.	1.7	25
90	Modeling the angiotensinâ€converting enzyme inhibitory activity of peptide mixtures obtained from cheese whey hydrolysates using concentration–response curves. Biotechnology Progress, 2012, 28, 1197-1206.	1.3	24

#	Article	IF	CITATIONS
91	Bio-Based Nanoparticles as a Carrier of Î ² -Carotene: Production, Characterisation and In Vitro Gastrointestinal Digestion. Molecules, 2020, 25, 4497.	1.7	24
92	Production of gibberellic acid from mussel processing wastes in submerged batch culture. Bioresource Technology, 1993, 45, 213-221.	4.8	23
93	A Review on the Role of Food-Derived Bioactive Molecules and the Microbiota–Gut–Brain Axis in Satiety Regulation. Nutrients, 2021, 13, 632.	1.7	23
94	Active Flexible Films for Food Packaging: A Review. Polymers, 2022, 14, 2442.	2.0	23
95	Enzymatic Hydrolysis of Chestnut Purée: Process Optimization Using Mixtures of α-Amylase and Glucoamylase. Journal of Agricultural and Food Chemistry, 2004, 52, 2907-2914.	2.4	22
96	Modelling the Biphasic Growth and Product Formation by <i>Enterococcus faecium</i> CECT 410 in Realkalized Fed-Batch Fermentations in Whey. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-16.	3.0	22
97	Changes of the shelf life of candelilla wax/tarbush bioactive based-nanocoated apples at industrial level conditions. Scientia Horticulturae, 2018, 231, 43-48.	1.7	22
98	Evaluation of the specific migration according to EU standards of titanium from Chitosan/Metal complexes films containing TiO2 particles into different food simulants. A comparative study of the nano-sized vs micro-sized particles. Food Packaging and Shelf Life, 2020, 26, 100579.	3.3	22
99	Polymeric nanoparticles as oral delivery systems for a grape pomace extract towards the improvement of biological activities. Materials Science and Engineering C, 2021, 119, 111551.	3.8	22
100	Enhancement of the bioproduction potential of an amylaceous effluent. Bioresource Technology, 1993, 44, 155-163.	4.8	21
101	Assessment of Relevant Factors Influencing Lipolytic Enzyme Production by <i>Thermus thermophilus </i> HB27 in Laboratoryâ€5cale Bioreactors. Chemical Engineering and Technology, 2009, 32, 606-612.	0.9	21
102	An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: Purification, characterisation and structural modelling. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 127-137.	1.8	21
103	Functional Characterisation and Antimicrobial Efficiency Assessment of Smart Nanohydrogels Containing Natamycin Incorporated into Polysaccharide-Based Films. Food and Bioprocess Technology, 2015, 8, 1430-1441.	2.6	21
104	Experimental protocol for the recovery and evaluation of bioactive compounds of tarbush against postharvest fruit fungi. Food Chemistry, 2016, 198, 62-67.	4.2	21
105	Comparison of soybean hull pre-treatments to obtain cellulose and chemical derivatives: Physical chemistry characterization. Carbohydrate Polymers, 2018, 198, 601-610.	5.1	21
106	The physicochemical, antifungal and antioxidant properties of a mixed polyphenol based bioactive film. Heliyon, 2018, 4, e00942.	1.4	20
107	The clinical path to deliver encapsulated phages and lysins. FEMS Microbiology Reviews, 2021, 45, .	3.9	20
108	Enzymatic inhibition and thermal inactivation in the hydrolysis of chestnut purée with an amylases mixture. Enzyme and Microbial Technology, 2006, 39, 252-258.	1.6	19

#	Article	IF	CITATIONS
109	Stimulation of novel thermostable extracellular lipolytic enzyme in cultures of Thermus sp Enzyme and Microbial Technology, 2007, 40, 187-194.	1.6	19
110	Effect of acute exposure in swiss mice (Mus musculus) to a fibrinolytic protease produced by Mucor subtilissimus UCP 1262: An histomorphometric, genotoxic and cytological approach. Regulatory Toxicology and Pharmacology, 2019, 103, 282-291.	1.3	19
111	How additive manufacturing can boost the bioactivity of baked functional foods. Journal of Food Engineering, 2021, 294, 110394.	2.7	19
112	Thermal spring water enhances lipolytic activity in Thermus thermophilus HB27. Process Biochemistry, 2008, 43, 1383-1390.	1.8	18
113	Thermal resistance of <i>Salmonella enterica, Escherichia coli</i> and <i>Staphylococcus aureus</i> isolated from vegetable feed ingredients. Journal of the Science of Food and Agriculture, 2014, 94, 2274-2281.	1.7	18
114	Active bi-layer cellulose-based films: development and characterization. Cellulose, 2018, 25, 6361-6375.	2.4	18
115	Candelilla Wax-Based Coatings and Films: Functional and Physicochemical Characterization. Food and Bioprocess Technology, 2019, 12, 1787-1797.	2.6	18
116	<p>In Vitro Intestinal Uptake And Permeability Of Fluorescently-Labelled Hyaluronic Acid Nanogels</p> . International Journal of Nanomedicine, 2019, Volume 14, 9077-9088.	3.3	18
117	Joint effect of nitrogen and phosphorus concentrations on citric acid production by different strains of Aspergillus niger grown on an effluent. Biotechnology Letters, 1993, 15, 1157-1162.	1.1	17
118	Production and characterization of two N-terminal truncated esterases from Thermus thermophilus HB27 in a mesophilic yeast: Effect of N-terminus in thermal activity and stability. Protein Expression and Purification, 2011, 78, 120-130.	0.6	17
119	Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27. Process Biochemistry, 2014, 49, 927-935.	1.8	17
120	Functional Characterization of Poly(N-isopropylacrylamide) Nanohydrogels for the Controlled Release of Food Preservatives. Food and Bioprocess Technology, 2014, 7, 3429-3441.	2.6	17
121	Enzymatic production of xylooligosaccharides from Brazilian Syrah grape pomace flour: a green alternative to conventional methods for adding value to agricultural by―products. Journal of the Science of Food and Agriculture, 2019, 99, 1250-1257.	1.7	17
122	Characterization of PHBV films loaded with FO1 bacteriophage using polyvinyl alcohol-based nanofibers and coatings: A comparative study. Innovative Food Science and Emerging Technologies, 2021, 69, 102646.	2.7	17
123	Nanocoating with extract of tarbush to retard Fuji apples senescence. Postharvest Biology and Technology, 2017, 134, 67-75.	2.9	16
124	Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 2018, 25, 6011-6029.	2.4	16
125	One-step chromatographic method to purify α-lactalbumin from whey for nanotube synthesis purposes. Food Chemistry, 2019, 275, 480-488.	4.2	16
126	Dehydration of protein lactoferrin-glycomacropeptide nanohydrogels. Food Hydrocolloids, 2020, 101, 105550.	5.6	16

#	Article	IF	CITATIONS
127	Delonix regia galactomannan-based edible films: Effect of molecular weight and k-carrageenan on physicochemical properties. Food Hydrocolloids, 2020, 103, 105632.	5.6	16
128	Partial purification of fibrinolytic and fibrinogenolytic protease from Gliricidia sepium seeds by aqueous two-phase system. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101669.	1.5	16
129	Thermostable lipolytic enzymes production in batch and continuous cultures of Thermus thermophilus HB27. Bioprocess and Biosystems Engineering, 2010, 33, 347-354.	1.7	15
130	Polysaccharide-Based Multilayer Nano-Emulsions Loaded with Oregano Oil: Production, Characterization, and In Vitro Digestion Assessment. Nanomaterials, 2021, 11, 878.	1.9	15
131	A fed-batch culture model for improved production of gibberellic acid from a waste medium. Biotechnology Letters, 1995, 17, 263-268.	1.1	14
132	Optimization of Solid-State Enzymatic Hydrolysis of Chestnut Using Mixtures of α-Amylase and Glucoamylase. Journal of Agricultural and Food Chemistry, 2005, 53, 989-995.	2.4	14
133	Alcoholic chestnut fermentation in mixed culture. Compatibility criteria between Aspergillus oryzae and Saccharomyces cerevisiae strains. Bioresource Technology, 2008, 99, 7255-7263.	4.8	14
134	Regulation of the interfacial activation within the <i>Candida rugosa</i> lipase family. Journal of Physical Organic Chemistry, 2009, 22, 508-514.	0.9	14
135	Biofunctionality assessment of Î \pm -lactalbumin nanotubes. Food Hydrocolloids, 2021, 117, 106665.	5.6	14
136	Platform design for extraction and isolation of Bromelain: Complex formation and precipitation with carrageenan. Process Biochemistry, 2017, 54, 156-161.	1.8	13
137	Pectin-Based Films Loaded with Hydroponic Nopal Mucilages: Development and Physicochemical Characterization. Coatings, 2020, 10, 467.	1.2	13
138	Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films' Properties. Foods, 2021, 10, 1512.	1.9	13
139	Gelation Behavior and Stability of Multicomponent Sterol-Based Oleogels. Gels, 2022, 8, 37.	2.1	12
140	The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications. Marine Drugs, 2021, 19, 384.	2.2	11
141	Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Molecules, 2021, 26, 4378.	1.7	11
142	Production of citrinin byMonascus ruber submerged culture in chemically defined media. Acta Biotechnologica, 1996, 16, 315-319.	1.0	10
143	Amylase production by <i>Aspergillus oryzae</i> in a solidâ€state bioreactor with fedâ€batch operation using mussel processing wastewaters as feeding medium. Journal of Chemical Technology and Biotechnology, 2013, 88, 226-236.	1.6	10
144	Optimization of Antimicrobial Combined Effect of Organic Acids and Temperature on Foodborne <i>Salmonella</i> and <i>Escherichia coli</i> in Cattle Feed by Response Surface Methodology. Foodborne Pathogens and Disease, 2013, 10, 1030-1036.	0.8	10

#	Article	IF	CITATIONS
145	Low energy nanoemulsions as carriers of thyme and lemon balm essential oils. LWT - Food Science and Technology, 2022, 154, 112748.	2.5	10
146	Structural and thermo-rheological analysis of solutions and gels of a Î ² -lactoglobulin fraction isolated from bovine whey. Food Chemistry, 2016, 198, 45-53.	4.2	9
147	Evaluation of antimicrobial effectiveness of pimaricin-loaded thermosensitive nanohydrogel coating on Arzúa-Ulloa DOP cheeses. Food Control, 2017, 73, 1095-1104.	2.8	9
148	Carbon-based sputtered coatings for enhanced chitosan-based films properties. Applied Surface Science, 2018, 433, 689-695.	3.1	9
149	Amphiphilic Modified Galactomannan as a Novel Potential Carrier for Hydrophobic Compounds. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	9
150	Development of alginate microparticles as efficient adsorption matrix for protein recovery. Process Biochemistry, 2019, 80, 157-163.	1.8	9
151	Safety and potential functionality of nanoparticles loaded with a trypsin inhibitor isolated from tamarind seeds. Future Foods, 2020, 1-2, 100001.	2.4	9
152	Impact of Simulated Human Gastrointestinal Digestion on the Bioactive Fraction of Upcycled Pineapple By-Products. Foods, 2022, 11, 126.	1.9	9
153	Microalgae as a Potential Functional Ingredient: Evaluation of the Phytochemical Profile, Antioxidant Activity and In-Vitro Enzymatic Inhibitory Effect of Different Species. Molecules, 2021, 26, 7593.	1.7	9
154	Emulsion-filled hydrogels for food applications: influence of pH on emulsion stability and a coating on microgel protection. Food and Function, 2020, 11, 8331-8341.	2.1	8
155	Fortification of coconut water with microencapsulated grape pomace extract towards a novel electrolyte beverage: Biological, sensorial and quality aspects. Future Foods, 2021, 4, 100079.	2.4	8
156	Title is missing!. Biotechnology Letters, 1998, 20, 127-130.	1.1	7
157	Evaluation of Antimicrobial Effectiveness of Pimaricin-Loaded Thermosensitive Nanohydrogels in Grape Juice. Food and Bioprocess Technology, 2015, 8, 1583-1592.	2.6	7
158	Does the Future of Food Pass by Using Nanotechnologies?. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	7
159	Antibiofilm Efficacy of the Pseudomonas aeruginosaÂPbunavirus vB_PaeM-SMS29 Loaded onto Dissolving Polyvinyl Alcohol Microneedles. Viruses, 2022, 14, 964.	1.5	7
160	Moringa oleifera—Storage Stability, In Vitro-Simulated Digestion and Cytotoxicity Assessment of Microencapsulated Extract. Processes, 2020, 8, 770.	1.3	6
161	Partitioning of Small Hydrophobic Molecules into Polydimethylsiloxane in Microfluidic Analytical Devices. Micromachines, 2022, 13, 713.	1.4	6
162	Smart Nanohydrogels for Controlled Release of Food Preservatives. , 2016, , 349-362.		5

#	Article	IF	CITATIONS
163	Pseudomonas aeruginosa PAO 1 In Vitro Time–Kill Kinetics Using Single Phages and Phage Formulations—Modulating Death, Adaptation, and Resistance. Antibiotics, 2021, 10, 877.	1.5	5
164	Bio-silage of mussel work-processing wastes by lactobacilli on semi-solid culture. Journal of Food Engineering, 2010, 97, 355-359.	2.7	4
165	Immobilization of fibrinolytic protease from Mucor subtilissimus UCP 1262 in magnetic nanoparticles. Protein Expression and Purification, 2022, 192, 106044.	0.6	4
166	Functional Foods. , 2017, , 165-200.		3
167	Short pre-enrichment and modified matrix lysis. A comparative study towards same-day detection of Listeria monocytogenes. LWT - Food Science and Technology, 2022, 154, 112900.	2.5	3
168	Systematic analysis on the obtaining of fibrinolytic fungi enzymes. Research, Society and Development, 2022, 11, e13611225449.	0.0	3
169	Modelling the enzymatic activity of two lipases isoenzymes commonly used in the food industry Modelado de la actividad enzimA¡tica de dos isoenzimas lipasas comAºnmente utilizadas en la industria alimentaria. CYTA - Journal of Food, 2011, 9, 307-313.	0.9	2
170	Edible films and coatings as carriers of nano and microencapsulated ingredients. , 2021, , 211-273.		2
171	In vitro digestion as a tool for functional isolation of a probiotic potential Lactobacillus rhamnosus. Research, Society and Development, 2020, 9, e3119108544.	0.0	2
172	The Effect of Simultaneous Radical Polymerization of Poly(N-vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 387 Td (Polysaccharide. Journal of Polymers and the Environment, 2020, 28, 152-165.	pyrrolidon 2.4	e)/α,ω-Bis(1
173	Evaluation of partial thromboplastin time, thrombin time and prothrombin time over treated plasma using a fibrinolytic protease. Research, Society and Development, 2022, 11, e15311225439.	0.0	1
174	Protease com atividade fibrinolÃŧica e colagenolÃŧica produzida por Aspergillus ochraceus URM604. Research, Society and Development, 2022, 11, e15511225500.	0.0	1
175	Extraction and characterization of mucilage from Opuntia ficus-indica cultivated on hydroponic system. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12460.	0.5	1
176	Basic Biochemistry. , 2017, , 33-58.		0
177	Zn and Zn-Fe Nanostructures with Multifunctional Properties as Components for Food Packaging Materials, Nanomaterials, 2022, 12, 2104.	1.9	0