Chun Kiang Chua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 2014, 43, 291-312.	18.7	1,479
2	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188.	23.0	968
3	Graphene and its electrochemistry – an update. Chemical Society Reviews, 2016, 45, 2458-2493.	18.7	366
4	Covalent chemistry on graphene. Chemical Society Reviews, 2013, 42, 3222.	18.7	335
5	Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene. ACS Nano, 2015, 9, 2548-2555.	7.3	248
6	Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12899-12904.	3.3	195
7	Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides. Chemistry of Materials, 2012, 24, 2292-2298.	3.2	187
8	Graphite Oxides: Effects of Permanganate and Chlorate Oxidants on the Oxygen Composition. Chemistry - A European Journal, 2012, 18, 13453-13459.	1.7	156
9	Reduction of graphene oxide with substituted borohydrides. Journal of Materials Chemistry A, 2013, 1, 1892-1898.	5.2	127
10	Graphene oxide reduction by standard industrial reducing agent: thiourea dioxide. Journal of Materials Chemistry, 2012, 22, 11054.	6.7	125
11	The reduction of graphene oxide with hydrazine: elucidating its reductive capability based on a reaction-model approach. Chemical Communications, 2016, 52, 72-75.	2.2	117
12	Inherently Electroactive Graphene Oxide Nanoplatelets As Labels for Single Nucleotide Polymorphism Detection. ACS Nano, 2012, 6, 8546-8551.	7.3	113
13	Carbocatalysis: The State of "Metalâ€Free―Catalysis. Chemistry - A European Journal, 2015, 21, 12550-125	621.7	104
14	Monothiolation and Reduction of Graphene Oxide <i>via</i> One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano, 2015, 9, 4193-4199.	7.3	92
15	Reduction Pathways of 2,4,6-Trinitrotoluene: An Electrochemical and Theoretical Study. Journal of Physical Chemistry C, 2012, 116, 4243-4251.	1.5	88
16	Unusual Inherent Electrochemistry of Graphene Oxides Prepared Using Permanganate Oxidants. Chemistry - A European Journal, 2013, 19, 12673-12683.	1.7	86
17	DNA biosensing with 3D printing technology. Analyst, The, 2017, 142, 279-283.	1.7	82
18	Layered transition metal oxyhydroxides as tri-functional electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11920-11929.	5.2	80

#	Article	IF	CITATIONS
19	Oxidation Debris in Graphene Oxide Is Responsible for Its Inherent Electroactivity. ACS Nano, 2014, 8, 4197-4204.	7.3	77
20	Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER. Physical Chemistry Chemical Physics, 2016, 18, 1699-1711.	1.3	77
21	Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling. Nanoscale, 2015, 7, 20256-20266.	2.8	76
22	Renewal of sp2 bonds in graphene oxides via dehydrobromination. Journal of Materials Chemistry, 2012, 22, 23227.	6.7	73
23	Alternating Misfit Layered Transition/Alkaline Earth Metal Chalcogenide Ca ₃ Co ₄ O ₉ as a New Class of Chalcogenide Materials for Hydrogen Evolution. Chemistry of Materials, 2014, 26, 4130-4136.	3.2	68
24	Electron transfer properties of chemically reduced graphene materials with different oxygen contents. Journal of Materials Chemistry A, 2014, 2, 10668-10675.	5.2	64
25	Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale, 2014, 6, 10792-10797.	2.8	59
26	Graphitic carbon nitride: Effects of various precursors on the structural, morphological and electrochemical sensing properties. Applied Materials Today, 2017, 8, 150-162.	2.3	56
27	Selective Removal of Hydroxyl Groups from Graphene Oxide. Chemistry - A European Journal, 2013, 19, 2005-2011.	1.7	54
28	Graphene Oxide Nanoribbons from the Oxidative Opening of Carbon Nanotubes Retain Electrochemically Active Metallic Impurities. Angewandte Chemie - International Edition, 2013, 52, 8685-8688.	7.2	54
29	Friedel–Crafts Acylation on Graphene. Chemistry - an Asian Journal, 2012, 7, 1009-1012.	1.7	52
30	Introducing dichlorocarbene in graphene. Chemical Communications, 2012, 48, 5376.	2.2	51
31	Graphene based nanomaterials as electrochemical detectors in Lab-on-a-chip devices. Electrochemistry Communications, 2011, 13, 517-519.	2.3	50
32	Topâ€Down and Bottomâ€Up Approaches in Engineering 1 T Phase Molybdenum Disulfide (MoS ₂): Towards Highly Catalytically Active Materials. Chemistry - A European Journal, 2016, 22, 14336-14341.	1.7	45
33	Graphene Oxides Exhibit Limited Cathodic Potential Window Due to Their Inherent Electroactivity. Journal of Physical Chemistry C, 2011, 115, 17647-17650.	1.5	43
34	Rational Design of Carboxyl Groups Perpendicularly Attached to a Graphene Sheet: A Platform for Enhanced Biosensing Applications. Chemistry - A European Journal, 2014, 20, 217-222.	1.7	43
35	Influence of Methyl Substituent Position on Redox Properties of Nitroaromatics Related to 2,4,6â€Trinitrotoluene. Electroanalysis, 2011, 23, 2350-2356.	1.5	42
36	Ball-milled sulfur-doped graphene materials contain metallic impurities originating from ball-milling apparatus: their influence on the catalytic properties. Physical Chemistry Chemical Physics, 2016, 18, 17875-17880.	1.3	42

#	Article	IF	CITATIONS
37	Detection of biomarkers with graphene nanoplatelets and nanoribbons. Analyst, The, 2014, 139, 1072.	1.7	41
38	Graphenes Prepared by Hummers, Staudenmaier and Hofmann Methods for Analysis of TNTâ€Based Nitroaromatic Explosives in Seawater. Electroanalysis, 2012, 24, 2085-2093.	1.5	40
39	Chemical Preparation of Graphene Materials Results in Extensive Unintentional Doping with Heteroatoms and Metals. Chemistry - A European Journal, 2014, 20, 15760-15767.	1.7	39
40	Light and Atmosphere Affect the Quasiâ€equilibrium States of Graphite Oxide and Graphene Oxide Powders. Small, 2015, 11, 1266-1272.	5.2	34
41	Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties. Physical Chemistry Chemical Physics, 2017, 19, 15914-15923.	1.3	33
42	Graphenes prepared from multi-walled carbon nanotubes and stacked graphene nanofibers for detection of 2,4,6-trinitrotoluene (TNT) in seawater. Analyst, The, 2013, 138, 1700.	1.7	32
43	Towards Graphane Applications in Security: The Electrochemical Detection of Trinitrotoluene in Seawater on Hydrogenated Graphene. Electroanalysis, 2014, 26, 62-68.	1.5	32
44	Dichlorocarbeneâ€Functionalized Fluorographene: Synthesis and Reaction Mechanism. Small, 2015, 11, 3790-3796.	5.2	32
45	Remarkable electrochemical properties of electrochemically reduced graphene oxide towards oxygen reduction reaction are caused by residual metal-based impurities. Electrochemistry Communications, 2016, 62, 17-20.	2.3	30
46	Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide. Physical Chemistry Chemical Physics, 2012, 14, 12794.	1.3	28
47	Intrinsic electrochemical performance and precise control of surface porosity of graphene-modified electrodes using the drop-casting technique. Electrochemistry Communications, 2015, 59, 86-90.	2.3	28
48	Chemically Modified Graphenes as Detectors in Labâ€onâ€Chip Device. Electroanalysis, 2013, 25, 945-950.	1.5	27
49	Regeneration of a Conjugated sp ² Graphene System through Selective Defunctionalization of Epoxides by Using a Proven Synthetic Chemistry Mechanism. Chemistry - A European Journal, 2014, 20, 1871-1877.	1.7	25
50	High temperature superconducting materials as bi-functional catalysts for hydrogen evolution and oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 8346-8352.	5.2	25
51	Graphene Sheet Orientation of Parent Material Exhibits Dramatic Influence on Graphene Properties. Chemistry - an Asian Journal, 2012, 7, 2367-2372.	1.7	23
52	Functionalization of Hydrogenated Graphene: Transitionâ€Metalâ€Catalyzed Cross oupling Reactions of Allylic Câ^'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 10751-10754.	7.2	22
53	Facile labelling of graphene oxide for superior capacitive energy storage and fluorescence applications. Physical Chemistry Chemical Physics, 2016, 18, 9673-9681.	1.3	20
54	Selective Nitrogen Functionalization of Graphene by Buchererâ€Type Reaction. Chemistry - A European Journal, 2015, 21, 8090-8095.	1.7	19

#	Article	IF	CITATIONS
55	Detection of silver nanoparticles on a <scp>l</scp> abâ€onâ€chip platform. Electrophoresis, 2013, 34, 2007-2010.	1.3	16
56	Nanostructured MoS ₂ Nanorose/Graphene Nanoplatelet Hybrids for Electrocatalysis. Chemistry - A European Journal, 2016, 22, 5969-5975.	1.7	14
57	Susceptibility of FeS2 hydrogen evolution performance to sulfide poisoning. Electrochemistry Communications, 2015, 58, 29-32.	2.3	13
58	Functionalization of Hydrogenated Graphene: Transitionâ€Metalâ€Catalyzed Crossâ€Coupling Reactions of Allylic Câ~H Bonds. Angewandte Chemie, 2016, 128, 10909-10912.	1.6	12
59	Prolonged exposure of graphite oxide to soft X-ray irradiation during XPS measurements leads to alterations of the chemical composition. Analyst, The, 2013, 138, 7012.	1.7	11
60	Fluorinated Nanocarbons Cytotoxicity. Chemistry - A European Journal, 2015, 21, 13020-13026.	1.7	10
61	Misfitâ€Layered Bi _{1.85} Sr ₂ Co _{1.85} O _{7.7â^'<i>δ</i>} for the Hydrogen Evolution Reaction: Beyond van der Waals Heterostructures. ChemPhysChem, 2015, 16, 769-774.	1.0	10
62	Inherent Electrochemistry of Layered Postâ€Transition Metal Halides: The Unexpected Effect of Potential Cycling of PbI ₂ . Chemistry - A European Journal, 2015, 21, 3073-3078.	1.7	10
63	An optimized band-target entropy minimization for mass spectral reconstruction of severely co-eluting and trace-level components. Analytical and Bioanalytical Chemistry, 2018, 410, 6549-6560.	1.9	10
64	Dynamic background noise removal from overlapping GC-MS peaks via an entropy minimization algorithm. Analytical Methods, 2017, 9, 2667-2672.	1.3	8
65	Chemically Reduced Graphene Oxide for the Assessment of Food Quality: How the Electrochemical Platform Should Be Tailored to the Application. Chemistry - A European Journal, 2017, 23, 1930-1936.	1.7	7
66	Morphologyâ€Đependent Magnetism in Nanographene: Beyond Nanoribbons. Advanced Functional Materials, 2018, 28, 1800592.	7.8	5
67	Rapid and Sensitive Direct Detection of Endotoxins by Pyrolysis–Gas Chromatography–Mass Spectrometry. ACS Omega, 2021, 6, 15192-15198.	1.6	5
68	Improving annotation of known-unknowns with accurately reconstructed mass spectra. International Journal of Mass Spectrometry, 2020, 451, 116321.	0.7	4
69	Mass spectral reconstruction of LC/MS data with entropy minimization. International Journal of Mass Spectrometry, 2020, 454, 116359.	0.7	4
70	Permanganate-Route-Prepared Electrochemically Reduced Graphene Oxides Exhibit Limited Anodic Potential Window. Journal of Physical Chemistry C, 2014, 118, 23368-23375.	1.5	3
71	Lower limit of detection achieved by raw band-target entropy minimization (rBTEM) for trace and coeluted gas chromatography-mass spectrometry components. Analytical Letters, 2019, 52, 1579-1589.	1.0	3
72	Graphene Oxide: Light and Atmosphere Affect the Quasi-equilibrium States of Graphite Oxide and Graphene Oxide Powders (Small 11/2015). Small, 2015, 11, 1265-1265.	5.2	2

#	Article	IF	CITATIONS
73	Fluorographene: Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism (Small 31/2015). Small, 2015, 11, 3789-3789.	5.2	2
74	Elimination of Matrix Interferences in <scp>GCâ€MS</scp> Analysis of Pesticides by Entropy Minimization. Journal of the Chinese Chemical Society, 2017, 64, 804-812.	0.8	2
75	Selective Nitrogen Functionalization of Graphene by Bucherer-Type Reaction. Chemistry - A European Journal, 2015, 21, 7969-7969.	1.7	1
76	Innentitelbild: Graphene Oxide Nanoribbons from the Oxidative Opening of Carbon Nanotubes Retain Electrochemically Active Metallic Impurities (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8634-8634.	1.6	0
77	Graphene: Morphology-Dependent Magnetism in Nanographene: Beyond Nanoribbons (Adv. Funct.) Tj ETQq1 1 C).784314 ı 7.8	rg₿T /Overlo
78	Deodorizing the king of fruits: Durian stalk deodorizes the aroma of durian. Journal of the Chinese Chemical Society, 2021, 68, 532-535.	0.8	0