Morten Scheibye-Knudsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5571974/publications.pdf

Version: 2024-02-01

67 papers

7,835 citations

94433 37 h-index 62 g-index

75 all docs 75 docs citations

75 times ranked

11492 citing authors

#	Article	IF	CITATIONS
1	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	3.1	4
2	Clinical Trials Targeting Aging. Frontiers in Aging, 2022, 3, .	2.6	17
3	Deprogramming metabolism in pancreatic cancer with a bi-functional GPR55 inhibitor and biased \hat{l}^22 adrenergic agonist. Scientific Reports, 2022, 12, 3618.	3.3	3
4	A cross-sectional study of functional and metabolic changes during aging through the lifespan in male mice. ELife, 2021, 10, .	6.0	47
5	Longevity medicine: upskilling the physicians of tomorrow. The Lancet Healthy Longevity, 2021, 2, e187-e188.	4.6	11
6	EX-vivo whole blood stimulation with A2E does not elicit an inflammatory cytokine response in patients with age-related macular degeneration. Scientific Reports, 2021, 11, 8226.	3.3	3
7	Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis. Nucleic Acids Research, 2021, 49, 7389-7405.	14.5	14
8	Inhibition of the neuromuscular acetylcholine receptor with atracurium activates FOXO/DAFâ€16â€induced longevity. Aging Cell, 2021, 20, e13381.	6.7	9
9	Mitophagy and Neuroprotection. Trends in Molecular Medicine, 2020, 26, 8-20.	6.7	246
10	Protecting the Aging Genome. Trends in Cell Biology, 2020, 30, 117-132.	7.9	84
10	Protecting the Aging Genome. Trends in Cell Biology, 2020, 30, 117-132. A Grand Challenge in Aging Interventions: From Mice to Humans. Frontiers in Aging, 2020, 1, .	7.9	84
11	A Grand Challenge in Aging Interventions: From Mice to Humans. Frontiers in Aging, 2020, 1, . Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages.	2.6	0
11 12	A Grand Challenge in Aging Interventions: From Mice to Humans. Frontiers in Aging, 2020, 1, . Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature Metabolism, 2020, 2, 1265-1283.	2.6	206
11 12 13	A Grand Challenge in Aging Interventions: From Mice to Humans. Frontiers in Aging, 2020, 1, . Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature Metabolism, 2020, 2, 1265-1283. New methodologies in ageing research. Ageing Research Reviews, 2020, 62, 101094. MitophAging: Mitophagy in Aging and Disease. Frontiers in Cell and Developmental Biology, 2020, 8,	2.6 11.9 10.9	0 206 7
11 12 13	A Grand Challenge in Aging Interventions: From Mice to Humans. Frontiers in Aging, 2020, 1, . Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature Metabolism, 2020, 2, 1265-1283. New methodologies in ageing research. Ageing Research Reviews, 2020, 62, 101094. MitophAging: Mitophagy in Aging and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 239.	2.6 11.9 10.9 3.7	0 206 7 87
11 12 13 14	A Grand Challenge in Aging Interventions: From Mice to Humans. Frontiers in Aging, 2020, 1, . Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature Metabolism, 2020, 2, 1265-1283. New methodologies in ageing research. Ageing Research Reviews, 2020, 62, 101094. MitophAging: Mitophagy in Aging and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 239. ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	2.6 11.9 10.9 3.7	0 206 7 87

#	Article	IF	Citations
19	Artificial intelligence for aging and longevity research: Recent advances and perspectives. Ageing Research Reviews, 2019, 49, 49-66.	10.9	129
20	Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers. Scientific Reports, 2019, 9, 142.	3.3	63
21	A defined human aging phenome. Aging, 2019, 11, 5786-5806.	3.1	16
22	Emerging Antitumor Activities of the Bitter Melon (Momordica charantia). Current Protein and Peptide Science, 2019, 20, 296-301.	1.4	15
23	Monogenic Diseases of DNA Repair. New England Journal of Medicine, 2018, 378, 491-492.	27.0	8
24	Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1482-1490.	3.6	133
25	Aging and drug discovery. Aging, 2018, 10, 3079-3088.	3.1	25
26	Vive la radior $ ilde{A}$ ©sistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget, 2018, 9, 14692-14722.	1.8	62
27	Smoking causes early biological aging: a deep neural network analysis of common blood test results. , 2018, , .		1
28	Mitophagy in neurodegeneration and aging. Neurochemistry International, 2017, 109, 202-209.	3.8	272
29	Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Scientific Reports, 2017, 7, 46208.	3.3	116
30	Monogenic Diseases of DNA Repair. New England Journal of Medicine, 2017, 377, 1868-1876.	27.0	49
31	Cockayne syndrome: Clinical features, model systems and pathways. Ageing Research Reviews, 2017, 33, 3-17.	10.9	184
32	Cytochrome b5 reductase and the control of lipid metabolism and healthspan. Npj Aging and Mechanisms of Disease, 2016, 2, 16006.	4.5	57
33	NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell Metabolism, 2016, 24, 566-581.	16.2	420
34	A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiology of Aging, 2016, 48, 34-47.	3.1	30
35	3â€Hydroxybutyrate regulates energy metabolism and induces <scp>BDNF</scp> expression in cerebral cortical neurons. Journal of Neurochemistry, 2016, 139, 769-781.	3.9	179
36	Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12502-12507.	7.1	72

#	Article	IF	Citations
37	Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metabolism, 2016, 23, 1093-1112.	16.2	360
38	Nuclear DNA damage signalling to mitochondria in ageing. Nature Reviews Molecular Cell Biology, 2016, 17, 308-321.	37.0	294
39	A novel method for determining human <i>ex vivo</i> submaximal skeletal muscle mitochondrial function. Journal of Physiology, 2015, 593, 3991-4010.	2.9	13
40	Loss of NEIL1 causes defects in olfactory function in mice. Neurobiology of Aging, 2015, 36, 1007-1012.	3.1	18
41	Animal Models of Aging Research: Implications for Human Aging and Age-Related Diseases. Annual Review of Animal Biosciences, 2015, 3, 283-303.	7.4	233
42	DNA Damage, DNA Repair, Aging, and Neurodegeneration. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a025130.	6.2	285
43	A research agenda for aging in China in the 21st century. Ageing Research Reviews, 2015, 24, 197-205.	10.9	374
44	Protecting the mitochondrial powerhouse. Trends in Cell Biology, 2015, 25, 158-170.	7.9	260
45	Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair, 2014, 16, 44-53.	2.8	37
46	Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD+/SIRT1 Reduction. Cell, 2014, 157, 882-896.	28.9	554
47	A High-Fat Diet and NAD + Activate Sirt1 to Rescue Premature Aging in Cockayne Syndrome. Cell Metabolism, 2014, 20, 840-855.	16.2	306
48	Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy, 2014, 10, 1468-1469.	9.1	39
49	<scp>SRT</scp> 2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell, 2014, 13, 787-796.	6.7	208
50	Di-(2-ethylhexyl) phthalate inhibits DNA replication leading to hyperPARylation, SIRT1 attenuation and mitochondrial dysfunction in the testis. Scientific Reports, 2014, 4, 6434.	3.3	47
51	Metformin improves healthspan and lifespan in mice. Nature Communications, 2013, 4, 2192.	12.8	1,118
52	Mitochondrial deficiency in Cockayne syndrome. Mechanisms of Ageing and Development, 2013, 134, 275-283.	4.6	66
53	The Biarylpyrazole Compound AM251 Alters Mitochondrial Physiology via Proteolytic Degradation of ERR $\langle i \rangle$ 1± $\langle j \rangle$ 1. Molecular Pharmacology, 2013, 83, 157-166.	2.3	8
54	Long-Term Artificial Sweetener Acesulfame Potassium Treatment Alters Neurometabolic Functions in C57BL/6J Mice. PLoS ONE, 2013, 8, e70257.	2.5	50

#	Article	IF	CITATIONS
55	A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging, 2013, 5, 192-208.	3.1	53
56	Rapamycin: Current and Future Uses. , 2013, , 239-247.		0
57	Xeroderma pigmentosum group A protein modulates mitophagy through regulation of mitochondrialâ€associated proteins. FASEB Journal, 2013, 27, lb468.	0.5	0
58	Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. Journal of Experimental Medicine, 2012, 209, 855-869.	8.5	177
59	Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype. Free Radical Biology and Medicine, 2012, 53, 1371-1380.	2.9	47
60	Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. Journal of Cell Biology, 2012, 197, i4-i4.	5.2	0
61	Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein. Journal of Biological Chemistry, 2011, 286, 19270-19279.	3.4	115
62	SRT1720 improves survival and healthspan of obese mice. Scientific Reports, 2011, 1, 70.	3.3	249
63	Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane. FASEB Journal, 2010, 24, 2334-2346.	0.5	124
64	Mitochondrial base excision repair assays. Methods, 2010, 51, 416-425.	3.8	42
65	Changed mitochondrial function by pre- and/or postpartum diet alterations in sheep. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1349-E1357.	3.5	20
66	Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle. European Journal of Applied Physiology, 2009, 105, 279-287.	2.5	36
67	S12.44 Mitochondrial function in lamb as a consequence of maternal caloric restriction during pregnancy and high-fat-high-carbohydrate diet post partum. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S86.	1.0	0