Thomas Rosenau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5571867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell) Tj ETQq1 1 0.7	784314 rgB1 11.8	Γ <u>/</u> Qyerlock
2	Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnology Advances, 2015, 33, 1547-1571.	6.0	330
3	Effects of ball milling on the structure of cotton cellulose. Cellulose, 2019, 26, 305-328.	2.4	253
4	Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Letters, 2008, 49, 7322-7324.	0.7	225
5	Aerogels from Unaltered Bacterial Cellulose: Application of scCO ₂ Drying for the Preparation of Shaped, Ultra‣ightweight Cellulosic Aerogels. Macromolecular Bioscience, 2010, 10, 349-352.	2.1	175
6	A Novel Method for the Determination of Carbonyl Groups in Cellulosics by Fluorescence Labeling. 1. Method Development. Biomacromolecules, 2002, 3, 959-968.	2.6	163
7	Cellulose solutions in N-methylmorpholine-N-oxide (NMMO) – degradation processes and stabilizers. Cellulose, 2002, 9, 283-291.	2.4	163
8	A Novel Method for the Determination of Carbonyl Groups in Cellulosics by Fluorescence Labeling. 2. Validation and Applications. Biomacromolecules, 2002, 3, 969-975.	2.6	136
9	3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. Journal of Materials Chemistry B, 2018, 6, 7066-7075.	2.9	129
10	Title is missing!. Cellulose, 2002, 9, 41-53.	2.4	128
11	A Novel Method for the Determination of Carbonyl Groups in Cellulosics by Fluorescence Labeling. 3. Monitoring Oxidative Processes. Biomacromolecules, 2003, 4, 743-749.	2.6	127
12	Current Situation of the Challenging Scaleâ€Up Development of Hydroxymethylfurfural Production. ChemSusChem, 2020, 13, 3544-3564.	3.6	127
13	Mussel Adhesive-Inspired Design of Superhydrophobic Nanofibrillated Cellulose Aerogels for Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 9047-9055.	3.2	125
14	Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose, 2015, 22, 1591-1613.	2.4	112
15	Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties. Biomacromolecules, 2018, 19, 2969-2978.	2.6	109
16	Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Letters, 2002, 43, 7757-7759.	0.7	99
17	Cellulose aerogels: Highly porous, ultra-lightweight materials. Holzforschung, 2008, 62, 129-135.	0.9	96
18	New Opportunities in the Valorization of Technical Lignins. ChemSusChem, 2021, 14, 1016-1036.	3.6	94

#	Article	IF	CITATIONS
19	Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles. Holzforschung, 2007, 61, 662-667.	0.9	93
20	Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose, 2016, 23, 1949-1966.	2.4	88
21	Synthesis and Characterization of Periodate-Oxidized Polysaccharides: Dialdehyde Xylan (DAX). Biomacromolecules, 2016, 17, 2972-2980.	2.6	87
22	Cellulosic aerogels as ultra-lightweight materials. Part 2: Synthesis and properties 2 nd ICC 2007, Tokyo, Japan, October 25–29, 2007. Holzforschung, 2009, 63, 3-11.	0.9	81
23	Spruce milled wood lignin: linear, branched or cross-linked?. Green Chemistry, 2020, 22, 3985-4001.	4.6	81
24	Overview of Methods for the Direct Molar Mass Determination of Cellulose. Molecules, 2015, 20, 10313-10341.	1.7	80
25	Yellowing and brightness reversion of celluloses: CO or COOH, who is the culprit?. Cellulose, 2019, 26, 429-444.	2.4	79
26	Effects of periodate oxidation on cellulose polymorphs. Cellulose, 2015, 22, 2245-2261.	2.4	78
27	Getting Closer to Absolute Molar Masses of Technical Lignins. ChemSusChem, 2018, 11, 3259-3268.	3.6	76
28	Analysis of Oxidized Functionalities in Cellulose. , 2006, , 1-48.		75
29	Electron Beam Irradiation of Cellulosic Materials—Opportunities and Limitations. Materials, 2013, 6, 1584-1598.	1.3	74
30	Compatibility of Kraft Lignin, Organosolv Lignin and Lignosulfonate With PLA in 3D Printing. Journal of Wood Chemistry and Technology, 2019, 39, 14-30.	0.9	73
31	Oxidative modifications of cellulose in the periodate system – Reduction and beta-elimination reactions 2 nd ICC 2007, Tokyo, Japan, October 25–29, 2007. Holzforschung, 2009, 63, 12-17.	0.9	72
32	Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide. Macromolecular Symposia, 2010, 294, 64-74.	0.4	69
33	Characterization of technical lignins by NMR spectroscopy: optimization of functional group analysis by ³¹ P NMR spectroscopy. Holzforschung, 2015, 69, 807-814.	0.9	69
34	Fabrication of bacterial cellulose-based wound dressings with improved performance by impregnation with alginate. Materials Science and Engineering C, 2020, 110, 110619.	3.8	69
35	Vitamin E Chemistry. Nitration of Non-α-tocopherols: Products and Mechanistic Considerations. Journal of Organic Chemistry, 2007, 72, 6504-6512.	1.7	68
36	On the Nature of Carbonyl Groups in Cellulosic Pulps. Cellulose, 2005, 12, 43-50.	2.4	66

#	Article	IF	CITATIONS
37	Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung, 2010, 64, .	0.9	63
38	Hydrolytic processes and condensation reactions in the cellulose solvent system N,N-dimethylacetamide/lithium chloride. Part 2: degradation of cellulose. Polymer, 2003, 44, 7-17.	1.8	62
39	Isolation and identification of residual chromophores in cellulosic materials. Polymer, 2004, 45, 6437-6443.	1.8	62
40	Antioxidant Properties of Natural and Synthetic Chromanol Derivatives:Â Study by Fast Kinetics and Electron Spin Resonance Spectroscopy. Journal of Organic Chemistry, 2005, 70, 3472-3483.	1.7	62
41	Changes in the intra- and inter-fibrillar structure of lyocell (TENCEL®) fibers caused by NaOH treatment. Cellulose, 2009, 16, 37-52.	2.4	62
42	Lignin solubility in nonâ€imidazolium ionic liquids. Journal of Chemical Technology and Biotechnology, 2015, 90, 1821-1826.	1.6	62
43	The investigation of the influence of water and temperature on the LiCl/DMAc/cellulose system. Physical Chemistry Chemical Physics, 2003, 5, 1842-1847.	1.3	60
44	Theoretical Foundation for the Presence of Oxacarbenium Ions in Chemical Glycoside Synthesis. Journal of Organic Chemistry, 2014, 79, 7889-7894.	1.7	60
45	A comparison between near-infrared (NIR) and mid-infrared (ATR-FTIR) spectroscopy for the multivariate determination of compositional properties in wheat bran samples. Food Control, 2016, 60, 365-369.	2.8	60
46	A General, Selective, High-Yield N-Demethylation Procedure for Tertiary Amines by Solid Reagents in a Convenient Column Chromatography-like Setup. Organic Letters, 2004, 6, 541-544.	2.4	59
47	Synthesis of Gold Nanoparticles for Inâ€Situ Conjugation with Structural Carbohydrates. Angewandte Chemie - International Edition, 2008, 47, 9866-9869.	7.2	59
48	Dissolution Behavior of Different Celluloses. Biomacromolecules, 2011, 12, 871-879.	2.6	59
49	Regeneration of Aqueous Periodate Solutions by Ozone Treatment: A Sustainable Approach for Dialdehyde Cellulose Production. ChemSusChem, 2016, 9, 825-833.	3.6	59
50	Autocatalytic Decomposition ofN-MethylmorpholineN-Oxide Induced by Mannich Intermediates. Journal of Organic Chemistry, 1999, 64, 2166-2167.	1.7	57
51	Synthesis and Characterization of EMPO-Derived 5,5-Disubstituted 1-Pyrroline N-Oxides as Spin Traps Forming Exceptionally Stable Superoxide Spin Adducts. Biological Chemistry, 2003, 384, 493-500.	1.2	57
52	Unique reactivity of nanoporous cellulosic materials mediated by surface-confined water. Nature Communications, 2021, 12, 2513.	5.8	57
53	Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 2: Isolation and identification of chromophores. Cellulose, 2005, 12, 197-208.	2.4	56
54	Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII. Cellulose, 2015, 22, 1053-1062.	2.4	56

#	Article	IF	CITATIONS
55	Irradiation of Cellulosic Pulps: Understanding Its Impact on Cellulose Oxidation. Biomacromolecules, 2012, 13, 4171-4178.	2.6	54
56	Increased anthocyanin content in purple pericarpÂ×Âblue aleurone wheat crosses. Plant Breeding, 2013, 132, 546-552.	1.0	54
57	From a Theoretical Concept to Biochemical Reactions: Strain-Induced Bond Localization (SIBL) in Oxidation of Vitamin E. Chemistry - A European Journal, 2005, 11, 280-287.	1.7	53
58	van der Waals versus Hydrogen-Bonding Forces in a Crystalline Analog of Cellotetraose: Cyclohexyl 4′- <i>O</i> -Cyclohexyl β- <scp>d</scp> -Cellobioside Cyclohexane Solvate. Journal of the American Chemical Society, 2008, 130, 16678-16690.	6.6	53
59	Preparation and Reinforcement of Dualâ€Porous Biocompatible Cellulose Scaffolds for Tissue Engineering. Macromolecular Materials and Engineering, 2015, 300, 911-924.	1.7	52
60	Arabinoxylan Oligosaccharide Hydrolysis by Family 43 and 51 Glycosidases from Lactobacillus brevis DSM 20054. Applied and Environmental Microbiology, 2013, 79, 6747-6754.	1.4	51
61	Properties of Cellulosic Material after Cationization in Different Solvents. ACS Sustainable Chemistry and Engineering, 2016, 4, 2295-2301.	3.2	51
62	Chromophores in cellulosics, VI. First isolation and identification of residual chromophores from aged cotton linters. Cellulose, 2011, 18, 1623-1633.	2.4	50
63	Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1â^'x/ZnS (core/shell) quantum dots. Cellulose, 2013, 20, 3007-3024.	2.4	49
64	Isolation and identification of residual chromophores from aged bleached pulp samples. Holzforschung, 2007, 61, 656-661.	0.9	48
65	Silica modified cellulosic aerogels. Cellulose, 2011, 18, 143-149.	2.4	48
66	Drying of a cellulose II gel: effect of physical modification and redispersibility in water. Cellulose, 2017, 24, 1199-1209.	2.4	48
67	Insights into degradation pathways of oxidized anhydroglucose units in cellulose by β-alkoxy-elimination: a combined theoretical and experimental approach. Cellulose, 2018, 25, 3797-3814.	2.4	48
68	Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer. Cellulose, 2016, 23, 1189-1197.	2.4	47
69	Synthesis of redispersible spherical cellulose II nanoparticles decorated with carboxylate groups. Green Chemistry, 2016, 18, 1465-1468.	4.6	46
70	A General Aqueous Silanization Protocol to Introduce Vinyl, Mercapto or Azido Functionalities onto Cellulose Fibers and Nanocelluloses. Molecules, 2018, 23, 1427.	1.7	46
71	Structural elucidation of fucoidan from Cladosiphon okamuranus (Okinawa mozuku). Food Chemistry, 2019, 272, 222-226.	4.2	46
72	Silane Meets Click Chemistry: Towards the Functionalization of Wet Bacterial Cellulose Sheets. ChemSusChem, 2015, 8, 680-687.	3.6	43

#	Article	IF	CITATIONS
73	Thermal stability of cellulose insulation in electrical power transformers – A review. Carbohydrate Polymers, 2021, 252, 117196.	5.1	43
74	Wet esterification of never-dried cellulose: a simple process to surface-acetylated cellulose nanofibers. Green Chemistry, 2020, 22, 5605-5609.	4.6	41
75	Tailored Thermosetting Wood Adhesive Based on Well-Defined Hardwood Lignin Fractions. ACS Sustainable Chemistry and Engineering, 2020, 8, 13517-13526.	3.2	41
76	Assembling Native Elementary Cellulose Nanofibrils via a Reversible and Regioselective Surface Functionalization. Journal of the American Chemical Society, 2021, 143, 17040-17046.	6.6	41
77	Stabilization and First Direct Spectroscopic Evidence of theo-Quinone Methide Derived from Vitamin E. Organic Letters, 2002, 4, 4285-4288.	2.4	40
78	Aqueous Modification of Nano―and Microfibrillar Cellulose with a Click Synthon. ChemSusChem, 2016, 9, 75-79.	3.6	40
79	AKD-Modification of bacterial cellulose aerogels in supercritical CO2. Cellulose, 2012, 19, 1337-1349.	2.4	39
80	Nanostructured Cellulose II Gel Consisting of Spherical Particles. ACS Sustainable Chemistry and Engineering, 2016, 4, 4424-4432.	3.2	38
81	Controlled precipitation and purification of hemicellulose from DMSO and DMSO/water mixtures by carbon dioxide as anti-solvent. Journal of Supercritical Fluids, 2010, 53, 121-130.	1.6	37
82	Vitamin E Chemistry. Studies into Initial Oxidation Intermediates of α-Tocopherol: Disproving the Involvement of 5a-C-Centered "Chromanol Methide―Radicals. Journal of Organic Chemistry, 2007, 72, 3268-3281.	1.7	36
83	Soaking of pine wood chips with ionic liquids for reduced energy input during grinding. Green Chemistry, 2012, 14, 1079.	4.6	35
84	Surface properties and porosity of highly porous, nanostructured cellulose II particles. Cellulose, 2017, 24, 435-440.	2.4	35
85	Fast Track to Molarâ€Mass Distributions of Technical Lignins. ChemSusChem, 2017, 10, 629-635.	3.6	35
86	A fast track for the accurate determination of methoxyl and ethoxyl groups in lignin. RSC Advances, 2017, 7, 22974-22982.	1.7	34
87	2D Assignment and quantitative analysis of cellulose and oxidized celluloses using solution-state NMR spectroscopy. Cellulose, 2020, 27, 7929-7953.	2.4	34
88	Formation and Ecotoxicity of <i>N</i> -Heterocyclic Compounds on Ammoxidation of Mono- and Polysaccharides. Journal of Agricultural and Food Chemistry, 2013, 61, 9004-9014.	2.4	33
89	Hydroxymethylfurfural and its Derivatives: Potential Key Reactants in Adhesives. ChemSusChem, 2020, 13, 5408-5422.	3.6	33
90	Analytical techniques for the elucidation of wheat bran constituents and their structural features with emphasis on dietary fiber – AÂreview. Trends in Food Science and Technology, 2014, 35, 102-113.	7.8	32

#	Article	IF	CITATIONS
91	The influence of alkaline reserve on the aging behavior of book papers. Cellulose, 2013, 20, 1989-2001.	2.4	31
92	On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 1—analysis, acetylating agent, influence of water, and mechanistic considerations. Cellulose, 2015, 22, 3583-3596.	2.4	31
93	"Furan Endwise Peeling―of Celluloses: Mechanistic Studies and Application Perspectives of a Novel Reaction. European Journal of Organic Chemistry, 2008, 2008, 475-484.	1.2	30
94	The effect of 1-ethyl-3-methylimidazolium acetate on the enzymatic degradation of cellulose. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 121-129.	1.8	30
95	Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities. Biomacromolecules, 2018, 19, 973-979.	2.6	30
96	Soft cellulose II nanospheres: sol–gel behaviour, swelling and material synthesis. Nanoscale, 2019, 11, 17773-17781.	2.8	30
97	High nitrogen doped carbon nanofiber aerogels for sodium ion batteries: synergy of vacancy defects to boost sodium ion storage. Applied Surface Science, 2019, 496, 143717.	3.1	30
98	Cationization of cellulose by using <i>N</i> â€oxiranylmethylâ€ <i>N</i> â€methylmorpholinium chloride and 2â€oxiranylpyridine as etherification agents. Journal of Applied Polymer Science, 2009, 114, 1449-1456.	1.3	29
99	Molar mass-dependent profiles of functional groups and carbohydrates in kraft lignin. Journal of Wood Chemistry and Technology, 2017, 37, 171-183.	0.9	29
100	Interaction of ascaridole, carvacrol, and caryophyllene oxide from essential oil of <i>Chenopodium ambrosioides</i> L. with mitochondria in <i>Leishmania</i> and other eukaryotes. Phytotherapy Research, 2018, 32, 1729-1740.	2.8	29
101	Cellulose as matrix component of conducting films. Cellulose, 2011, 18, 937-944.	2.4	28
102	Effect of sonochemical treatments on the integrity and oxidation state of cellulose. Carbohydrate Polymers, 2013, 92, 921-927.	5.1	28
103	Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus. Plant Physiology, 2022, 188, 208-219.	2.3	28
104	Kinetic and chemical studies on the isomerization of monosaccharides in N-methylmorpholine-N-oxide (NMMO) under Lyocell conditions. Carbohydrate Research, 2004, 339, 1899-1906.	1.1	27
105	Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning. Carbohydrate Polymers, 2019, 226, 115258.	5.1	27
106	Porous Silk Fibroin/Cellulose Hydrogels for Bone Tissue Engineering via a Novel Combined Process Based on Sequential Regeneration and Porogen Leaching. Molecules, 2020, 25, 5097.	1.7	27
107	A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy. Carbohydrate Polymers, 2022, 278, 118887.	5.1	27
108	Instabilities in the System NMMO/Water/Cellulose (Lyocell Process) Caused by Polonowski Type Reactions. Holzforschung, 2002, 56, 199-208.	0.9	26

#	Article	IF	CITATIONS
109	Spin trapping of superoxide, alkyl- and lipid-derived radicals with derivatives of the spin trap EPPN. Biochemical Pharmacology, 2003, 66, 1717-1726.	2.0	26
110	Alkaline degradation kinetics and CE-separation of cello- and xylooligomers. Part I. Carbohydrate Research, 2003, 338, 1209-1216.	1.1	26
111	Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation. Cellulose, 2015, 22, 3569-3581.	2.4	26
112	Studies of the chemoenzymatic modification of cellulosic pulps by the laccase-TEMPO system. Holzforschung, 2011, 65, .	0.9	25
113	Deterioration of ancient Korean paper (Hanji), treated with beeswax: A mechanistic study. Carbohydrate Polymers, 2014, 101, 1249-1254.	5.1	25
114	Chromophores in cellulosics, XI: isolation and identification of residual chromophores from bacterial cellulose. Cellulose, 2014, 21, 2271-2283.	2.4	25
115	Partial Amorphization of Cellulose through Zinc Chloride Treatment: A Facile and Sustainable Pathway to Functional Cellulose Nanofibers with Flame-Retardant and Catalytic Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 13576-13582.	3.2	25
116	A SOLVENT-FREE AND FORMALIN-FREE ESCHWEILER-CLARKE METHYLATION FOR AMINES. Synthetic Communications, 2002, 32, 457-466.	1.1	24
117	Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 1: Studies on model compounds and pulps. Cellulose, 2005, 12, 51-57.	2.4	24
118	Spin adduct formation from lipophilic EMPO-derived spin traps with various oxygen- and carbon-centered radicals. Biochemical Pharmacology, 2005, 69, 297-305.	2.0	24
119	Very stable superoxide radical adducts of 5-ethoxycarbonyl- 3,5-dimethyl-pyrroline N-oxide (3,5-EDPO) and its derivatives. Biochemical Pharmacology, 2005, 69, 1351-1361.	2.0	24
120	Cross-Sectional Analysis of the Polysaccharide Composition in Cellulosic Fiber Materials by Enzymatic Peeling/High-Performance Capillary Zone Electrophoresis. Biomacromolecules, 2005, 6, 3146-3151.	2.6	24
121	Tocopheryl quinones and mitochondria. Molecular Nutrition and Food Research, 2010, 54, 601-615.	1.5	24
122	Bacterial Cellulose Aerogels: From Lightweight Dietary Food to Functional Materials. ACS Symposium Series, 2012, , 57-74.	0.5	24
123	Finally Dissolved! Activation Procedures to Dissolve Cellulose in DMAc/LiCl Prior to Size Exclusion Chromatography Analysis $\hat{a} \in A$ Review. Current Chromatography, 2014, 1, 52-68.	0.1	24
124	Synthesis, characterization and photo-bactericidal activity of silanized xanthene-modified bacterial cellulose membranes. Cellulose, 2015, 22, 3291-3304.	2.4	24
125	Ball Milling's Effect on Pine Milled Wood Lignin's Structure and Molar Mass. Molecules, 2018, 23, 2223.	1.7	24
126	Resourceâ€Saving Production of Dialdehyde Cellulose: Optimization of the Process at High Pulp Consistency. ChemSusChem, 2019, 12, 4679-4684.	3.6	24

#	Article	IF	CITATIONS
127	Polysaccharide- and \hat{l}^2 -Cyclodextrin-Based Chiral Selectors for Enantiomer Resolution: Recent Developments and Applications. Molecules, 2021, 26, 4322.	1.7	24
128	Calixarene-Type Macrocycles by Oxidation of Phenols Related to Vitamin E. Angewandte Chemie - International Edition, 2002, 41, 1171-1173.	7.2	23
129	lonic liquids as media for biomass processing: opportunities and restrictions. Holzforschung, 2011, 65,	0.9	23
130	Nano-cellulosic materials: The impact of water on their dissolution in DMAc/LiCl. Carbohydrate Polymers, 2013, 98, 1565-1572.	5.1	23
131	Chromophores from hexeneuronic acids: identification of HexA-derived chromophores. Cellulose, 2017, 24, 3671-3687.	2.4	23
132	Synthesis and Oxidation Behavior of 2,4,5,7,8-Pentamethyl-4H-1,3-benzodioxin-6-ol, a Multifunctional Oxatocopherol-Type Antioxidant. Journal of Organic Chemistry, 2002, 67, 3607-3614.	1.7	22
133	Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 1: Studies on model compounds and pulps. Cellulose, 2005, 12, 51-57.	2.4	22
134	Novel tocopheryl compounds XXV: synthesis and comparison of the para-quinones of all four homologous tocopherol model compounds and their 3,4-dehydro derivatives. Tetrahedron, 2007, 63, 5312-5318.	1.0	22
135	Dissolution of rayon fibers for size exclusion chromatography: a challenge. Cellulose, 2014, 21, 3291-3301.	2.4	22
136	Mechanism of ascaridole activation in Leishmania. Biochemical Pharmacology, 2017, 132, 48-62.	2.0	22
137	Profiling and quantification of grain anthocyanins in purple pericarp × blue aleurone wheat crosses by high-performance thin-layer chromatography and densitometry. Plant Methods, 2018, 14, 29.	1.9	22
138	Laccase-catalyzed oxidation of 1-(3,4-dimethoxyphenyl)-1-propene using ABTS as mediator. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 213-219.	1.8	21
139	An optimized CZE method for analysis of mono- and oligomeric aldose mixtures. Carbohydrate Research, 2004, 339, 2037-2043.	1.1	21
140	Synthesis of methyl 4′-O-methyl-13C12-β-d-cellobioside from 13C6-d-glucose. Part 1: Reaction optimization and synthesis. Carbohydrate Research, 2005, 340, 2428-2435.	1.1	21
141	Studies on DMSO-containing carbanilation mixtures: chemistry, oxidations and cellulose integrity. Cellulose, 2007, 14, 497-511.	2.4	21
142	Effect of pretreatment on arabinoxylan distribution in wheat bran. Carbohydrate Polymers, 2015, 121, 18-26.	5.1	21
143	A Direct Silanization Protocol for Dialdehyde Cellulose. Molecules, 2020, 25, 2458.	1.7	21
144	Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science. Cellulose, 2021, 28, 8719-8734.	2.4	21

#	Article	IF	CITATIONS
145	Crystal and molecular structure of methyl 4-O-methyl-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside. Carbohydrate Research, 2002, 337, 161-166.	1.1	20
146	Imidazole, a New Tunable Reagent for Producing Nanocellulose, Part I: Xylan-Coated CNCs and CNFs. Polymers, 2017, 9, 473.	2.0	20
147	Potentially Immunogenic Contaminants in Wood-Based and Bacterial Nanocellulose: Assessment of Endotoxin and (1,3)-β- <scp>d</scp> -Glucan Levels. Biomacromolecules, 2018, 19, 150-157.	2.6	20
148	Chemistry of 2,5-dihydroxy-[1,4]-benzoquinone, a Key Chromophore in Aged Cellulosics. Mini-Reviews in Organic Chemistry, 2013, 10, 309-315.	0.6	20
149	Synthesis of oxidized methyl 4-O-methyl-β-d-glucopyranoside and methyl β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside derivatives as substrates for fluorescence labeling reactions. Carbohydrate Research, 2002, 337, 691-700.	1.1	19
150	Ultralight-Weight Cellulose Aerogels from NBnMO-Stabilized Lyocell Dopes. Research Letters in Materials Science, 2007, 2007, 1-4.	0.2	19
151	Tocopheramine succinate and tocopheryl succinate: Mechanism of mitochondrial inhibition and superoxide radical production. Bioorganic and Medicinal Chemistry, 2014, 22, 684-691.	1.4	19
152	A Vitamin E Derivative as a Novel, Extremely Advantageous Amino-Protecting Group. Journal of Organic Chemistry, 1995, 60, 8120-8121.	1.7	18
153	The effect of water on cellulose solutions in DMAc/LiCl. Macromolecular Symposia, 2002, 190, 151-160.	0.4	18
154	Isolation and Identification of Residual Chromophores in Cellulosic Materials. Macromolecular Symposia, 2005, 223, 239-252.	0.4	18
155	Stabilization of ortho-quinone methides by a bis(sulfonium ylide) derived from 2,5-dihydroxy-[1,4]benzoquinone. Tetrahedron Letters, 2008, 49, 2442-2445.	0.7	18
156	Synthesis of ¹³ C-Perlabeled Cellulose with more than 99% Isotopic Enrichment by a Cationic Ring-Opening Polymerization Approach. Biomacromolecules, 2009, 10, 2817-2822.	2.6	18
157	Accurate Analysis of Formose Reaction Products by LC–UV: An Analytical Challenge. Journal of Chromatographic Science, 2014, 52, 169-175.	0.7	18
158	Preparation and analytical characterisation of pure fractions of cellooligosaccharides. Journal of Chromatography A, 2016, 1431, 47-54.	1.8	18
159	Phytochemical and biological activities of Silene viridiflora extractives. Development and validation of a HPTLC method for quantification of 20-hydroxyecdysone. Industrial Crops and Products, 2019, 129, 542-548.	2.5	18
160	High performance cellulose fibers regenerated from 1â€butylâ€3â€methylimidazolium chloride solution: Effects of viscosity and molecular weight. Journal of Applied Polymer Science, 2020, 137, 48681.	1.3	18
161	Synthesis and Testing of a Novel Fluorescence Label for Carbonyls in Carbohydrates and Cellulosics. Synlett, 2001, 2001, 0682-0684.	1.0	17
162	Spin trapping of C- and O-centered radicals with methyl-, ethyl-, pentyl-, and phenyl-substituted EMPO derivatives. Bioorganic and Medicinal Chemistry, 2006, 14, 3368-3376.	1.4	17

#	Article	IF	CITATIONS
163	Precipitation of Hemicelluloses from DMSO/Water Mixtures Using Carbon Dioxide as an Antisolvent. Journal of Nanomaterials, 2008, 2008, 1-5.	1.5	17
164	Cellulose Solubility: Dissolution and Analysis of "Problematic" Cellulose Pulps in the Solvent System DMAc/LiCl. ACS Symposium Series, 2010, , 165-177.	0.5	17
165	Synthesis and bio-applications of carbohydrate–gold nanoconjugates with nanoparticle and nanolayer forms. Materials Science and Engineering C, 2011, 31, 1221-1229.	3.8	17
166	Polythiophene-cellulose composites: synthesis, optical properties and homogeneous oxidative co-polymerization. Holzforschung, 2012, 66, .	0.9	17
167	Understanding the Impact of Supercritical Carbon Dioxide on the Delignification Mechanism During Organosolv Pulping: A Model Compound Study. Journal of Wood Chemistry and Technology, 2012, 32, 225-237.	0.9	17
168	Potential of different Sorghum bicolor (L. moench) varieties for combined ethanol and biogas production in the Pannonian climate of Austria. Energy, 2013, 55, 107-113.	4.5	17
169	On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 2—the impact of lignin on the kinetics of cellulose acetylation. Cellulose, 2017, 24, 2767-2774.	2.4	17
170	Studies on the carbenium-iminium ions derived from N-methylmorpholine-N-oxide (NMMO). Tetrahedron, 2004, 60, 301-306.	1.0	16
171	Tocopheramines and tocotrienamines as antioxidants: ESR spectroscopy, rapid kinetics and DFT calculations. Bioorganic and Medicinal Chemistry, 2013, 21, 5039-5046.	1.4	16
172	Oxidation and structural changes in NMMO-regenerated cellulose films. Cellulose, 2016, 23, 3535-3541.	2.4	16
173	Effect of UV radiation on the carbonyl distribution in different pulps. Holzforschung, 2004, 58, 597-602.	0.9	15
174	Synthesis of the perdeuterated cellulose solvents 1-ethyl-3-methylimidazolium acetate (EMIM-OAc-d14) and 1-butyl-3-methylimidazolium acetate (BMIM-OAc-d18) and of 2-13C-butyl-3-methylimidazolium acetate. Journal of Labelled Compounds and Radiopharmaceuticals, 2009, 52, 223-226.	0.5	15
175	Synthesis of the perdeuterated cellulose solvents N-methylmorpholine N-oxide (NMMO-d11 and) Tj ETQq1 1 0.78 (EMIM-OAc-d14) and 1-butyl-3-methylimidazolium acetate (BMIM-OAc-d18). Cellulose, 2009, 16, 139-150.	84314 rgB⊺ 2.4	/Overlock] 15
176	Modulation of the Mitochondrial Cytochrome bc ₁ Complex Activity by Chromanols and Related Compounds. Chemical Research in Toxicology, 2010, 23, 193-202.	1.7	15
177	The impact of esterification reactions on physical properties of cellulose thin films. Soft Matter, 2010, 6, 3680.	1.2	15
178	Novel paper sizing agents from renewables. Part 1: Preparation of a paper sizing agent derived from natural plant oils. Holzforschung, 2011, 65, 3-11.	0.9	15
179	Shaped hemocompatible aerogels from cellulose phosphates: preparation and properties. Holzforschung, 2012, 66, .	0.9	15
180	Degradation of 2,5-Dihydroxy-1,4-benzoquinone by Hydrogen Peroxide under Moderately Alkaline Conditions Resembling Pulp Bleaching: A Combined Kinetic and Computational Study. Journal of Organic Chemistry, 2013, 78, 11194-11203.	1.7	15

#	Article	IF	CITATIONS
181	Degradation of 2,5-Dihydroxy-1,4-benzoquinone by Hydrogen Peroxide: A Combined Kinetic and Theoretical Study. Journal of Organic Chemistry, 2013, 78, 3176-3182.	1.7	15
182	Mechanochemical reactions of cellulose and styrene. Cellulose, 2015, 22, 3217-3224.	2.4	15
183	A comparison of methods to quantify cationization of cellulosic pulps. Journal of Wood Chemistry and Technology, 2017, 37, 136-147.	0.9	15
184	Simple Green Route to Performance Improvement of Fully Bio-Based Linseed Oil Coating Using Nanofibrillated Cellulose. Polymers, 2017, 9, 425.	2.0	15
185	Hydrophobic Interaction Chromatography in 2 D Liquid Chromatography Characterization of Lignosulfonates. ChemSusChem, 2020, 13, 4595-4604.	3.6	15
186	Tools for Bark Biorefineries: Studies toward Improved Characterization of Lipophilic Lignocellulosic Extractives by Combining Supercritical Fluid and Gas Chromatography. ACS Sustainable Chemistry and Engineering, 2021, 9, 1323-1332.	3.2	15
187	Analyzing the effects of thermal stress on insulator papers by solid-state 13C NMR spectroscopy. Cellulose, 2022, 29, 1081-1095.	2.4	15
188	Agricultural utilization of lignosulfonates. Holzforschung, 2022, 76, 155-168.	0.9	15
189	On the non-classical course of Polonowski reactions of N-benzylmorpholine-N-oxide (NBnMO). Tetrahedron, 2005, 61, 3483-3487.	1.0	14
190	Stabilization of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell dopes) by addition of an N-oxide as sacrificial substrate. Holzforschung, 2005, 59, 503-506.	0.9	14
191	Solid-state NMR studies of methyl celluloses. Part 1: regioselectively substituted celluloses as standards for establishing an NMR data basis. Cellulose, 2009, 16, 129-137.	2.4	14
192	Vegetable oils in textile finishing applications: the action mode of wrinkle-reduction sprays and means for analyzing their performance. Textile Reseach Journal, 2014, 84, 449-460.	1.1	14
193	Effects of tribochemical treatments on the integrity of cellulose. Carbohydrate Polymers, 2014, 111, 688-699.	5.1	14
194	Detection of Cellulose-Derived Chromophores by Ambient Ionization-MS. Analytical Chemistry, 2016, 88, 1253-1258.	3.2	14
195	Improved quantification of monosaccharides in complex lignocellulosic biomass matrices: A gas chromatography-mass spectrometry based approach. Carbohydrate Research, 2017, 446-447, 7-12.	1.1	14
196	N-Methylmorpholine-N-oxide (NMMO): hazards in practice and pitfalls in theory. Cellulose, 2021, 28, 5985-5990.	2.4	14
197	The protection of bioenergetic functions in mitochondria by new synthetic chromanols. Biochemical Pharmacology, 2005, 70, 1361-1370.	2.0	13
198	Trapping of Reactive Intermediates to Study Reaction Mechanisms in Cellulose Chemistry. , 2006, , 153-197.		13

12

#	Article	IF	CITATIONS
199	Synthesis of 5a-α-Tocopheryl Azide and Its Reaction to 1-(5a-α-Tocopheryl)-1,2,3-triazols by [2+3]-Cycloaddition. European Journal of Organic Chemistry, 2006, 2006, 2081-2086.	1.2	13
200	A novel, mild and selective methylation of carboxyl groups in cellulosic pulps 10 th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung, 2009, 63, 657-663.	0.9	13
201	Wood modification with tricine. Holzforschung, 2015, 69, 985-991.	0.9	13
202	Sulfonic Acid Group Determination in Lignosulfonates by Headspace Gas Chromatography. ACS Sustainable Chemistry and Engineering, 2018, 6, 6240-6246.	3.2	13
203	"Dialdehyde Cellulose―Nanofibers by Electrospinning as Polyvinyl Alcohol Blends: Manufacture and Product Characterization. Journal of Wood Chemistry and Technology, 2018, 38, 96-110.	0.9	13
204	Photodynamic Antimicrobial Cellulosic Material Through Covalent Linkage of Protoporphyrin IX onto Lyocell Fibers. Journal of Wood Chemistry and Technology, 2019, 39, 57-74.	0.9	13
205	GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants, 2021, 10, 124.	1.6	13
206	Upcycling Byproducts from Insect (Fly Larvae and Mealworm) Farming into Chitin Nanofibers and Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 13618-13629.	3.2	13
207	Synthesis of methyl 4′-O-methyl-β-d-cellobioside-13C12 from d-glucose-13C6. Part 2: Solid-state NMR studies. Carbohydrate Research, 2007, 342, 65-70.	1.1	12
208	Synthesis of the perdeuterated cellulose solventsN-methylmorpholineN-oxide (NMMO-d11) andN,N-dimethylacetamide (DMAc-d9). Journal of Labelled Compounds and Radiopharmaceuticals, 2008, 51, 28-32.	0.5	12
209	Spin trapping experiments with different carbamoyl-substituted EMPO derivatives. Bioorganic and Medicinal Chemistry, 2008, 16, 8082-8089.	1.4	12
210	Effects of selected key chromophores on cellulose integrity upon bleaching 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung, 2009, 63, .	0.9	12
211	Determination of carbohydrate- and lignin-derived components in complex effluents from cellulose processing by capillary electrophoresis with electrospray ionization-mass spectrometric detection. Journal of Chromatography A, 2011, 1218, 8561-8566.	1.8	12
212	Synthesis of 5â€(Fluorophenyl)tocopherols as Novel Dioxin Receptor Antagonists. European Journal of Organic Chemistry, 2011, 2011, 2450-2457.	1.2	12
213	Chemistry of the Redox Series from Hexahydroxybenzene to Cyclohexanehexaone. Current Organic Synthesis, 2015, 13, 86-100.	0.7	12
214	Chemistry of 5,8-dihydroxy-[1,4]-naphthoquinone, a Key Chromophore in Aged Cellulosics. Mini-Reviews in Organic Chemistry, 2013, 10, 302-308.	0.6	12
215	Differences in the content, composition and structure of the lignins from rind and pith of papyrus (Cyperus papyrus L.) culms. Industrial Crops and Products, 2021, 174, 114226.	2.5	12
216	Acetylation of cellulose – Another pathway of natural cellulose aging during library storage of books and papers. Carbohydrate Polymers, 2022, 287, 119323.	5.1	12

#	Article	IF	CITATIONS
217	Deoxygenation of Amine Oxides by in situ-Generated Formic Pivalic Anhydride. Synlett, 1999, 1999, 623-625.	1.0	11
218	On a Novel Chromanoneâ^'Naphthalenetrione Rearrangement Related to Vitamin E. Organic Letters, 2002, 4, 1257-1258.	2.4	11
219	Novel tocopheryl compounds. Part 15: One-pot formation of furotocopheryl derivatives. Tetrahedron, 2003, 59, 3231-3235.	1.0	11
220	Sulfonium ylides derived from 2-hydroxy-benzoquinones: crystal and molecular structure and their one-step conversion into Mannich bases by amine N-oxides. Tetrahedron, 2004, 60, 5719-5723.	1.0	11
221	Confirmation by trapping, synthesis, and reactivity of 2,3-dehydro-N-methylmorpholine (DNMM). Tetrahedron, 2007, 63, 11817-11821.	1.0	11
222	Free radical trapping properties of several ethyl-substituted derivatives of 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide (EMPO). Bioorganic and Medicinal Chemistry, 2007, 15, 2827-2836.	1.4	11
223	Solid-state NMR studies of methyl celluloses. Part 2: Determination of degree of substitution and O-6 vs. O-2/O-3 substituent distribution in commercial methyl cellulose samples. Cellulose, 2009, 16, 1159-1166.	2.4	11
224	A general approach to cellulosic material with controlled slow release of active substances by derivatization of a cellulosic carrier matrix with trifunctional triazines. Cellulose, 2009, 16, 929-942.	2.4	11
225	Side Reactions in the System Cellulose/1-Alkyl-3-methyl-imidazolium Ionic Liquid. ACS Symposium Series, 2010, , 149-164.	0.5	11
226	Tocotrienamines and tocopheramines: Reactions with radicals and metal ions. Bioorganic and Medicinal Chemistry, 2011, 19, 6483-6491.	1.4	11
227	Novel paper sizing agents from renewables. Part 3: Emulsion stability and hydrolysis behavior compared to conventional sizes. Holzforschung, 2011, 65, 21-27.	0.9	11
228	Chromophores from hexeneuronic acids (HexA): synthesis of model compounds and primary degradation intermediates. Cellulose, 2017, 24, 3703-3723.	2.4	11
229	Changing the Molecular Structure of Kraft Lignins—Ozone Treatment at Alkaline Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 15163-15172.	3.2	11
230	How Alkaline Solvents in Viscosity Measurements Affect Data for Oxidatively Damaged Celluloses: Cupri-Ethylenediamine. Biomacromolecules, 2019, 20, 4117-4125.	2.6	11
231	Antioxidant properties and qualitative analysis of phenolic constituents in Ephedra spp. by HPTLC together with injection port derivatization GC–MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1180, 122877.	1.2	11
232	High-Resolution Profiling of the Functional Heterogeneity of Technical Lignins. Biomacromolecules, 2022, 23, 1413-1422.	2.6	11
233	Novel Tocopherol Compounds VII. γ-Tocopherol-5-carboxylic Acid - a Novel Route to γ-Tocopherol. Synlett, 1997, 1997, 208-210.	1.0	10
234	Studies into reactions of N-methylmorpholine-N-oxide (NMMO) and its hydrates with cyanuric chloride. Tetrahedron, 2002, 58, 9809-9815.	1.0	10

#	Article	IF	CITATIONS
235	Synthesis of novel 3-oxa-chromanol type antioxidants. Tetrahedron, 2003, 59, 2687-2691.	1.0	10
236	Spin adducts of several N-2-(2-alkoxycarbonyl-propyl)-α-pyridylnitrone derivatives with superoxide, alkyl and lipid-derived radicals. Biochemical Pharmacology, 2004, 68, 185-194.	2.0	10
237	Bromination of Nonâ€Î±â€Tocopherols: A Comparative Synthetic, Kinetic and Computational Study. European Journal of Organic Chemistry, 2009, 2009, 4873-4881.	1.2	10
238	Chiroptical properties of an alternatingly functionalized cellotriose bearing two porphyrin groups. Chemical Communications, 2012, 48, 7672.	2.2	10
239	Ammoxidation of Lignocellulosic Materials: Formation of Nonheterocyclic Nitrogenous Compounds from Monosaccharides. Journal of Agricultural and Food Chemistry, 2013, 61, 9015-9026.	2.4	10
240	Analysis of degradation products in rayon spinning baths. Holzforschung, 2015, 69, 695-702.	0.9	10
241	2,4′:2′,4 Dianhydride of 3-keto-glucoside, a precursor to chromophores of aged, yellow cellulose, and its weak interactions. Cellulose, 2017, 24, 1227-1234.	2.4	10
242	Degradation of the Cellulosic Key Chromophore 5,8-Dihydroxy-[1,4]-naphthoquinone by Hydrogen Peroxide under Alkaline Conditions. Journal of Organic Chemistry, 2017, 82, 11558-11565.	1.7	10
243	Molar Mass Characterization of Crude Lignosulfonates by Asymmetric Flow Field-Flow Fractionation. ACS Sustainable Chemistry and Engineering, 2019, 7, 216-223.	3.2	10
244	How alkaline solvents in viscosity measurements affect data for oxidatively damaged celluloses. Cuoxam and Cadoxen. Carbohydrate Polymers, 2020, 240, 116251.	5.1	10
245	Sulfuric Acid-Catalyzed Dehydratization of Carbohydrates for the Production of Adhesive Precursors. ACS Omega, 2021, 6, 16641-16648.	1.6	10
246	Lignin Quantification of Papyri by TGA—Not a Good Idea. Molecules, 2021, 26, 4384.	1.7	10
247	Mapping of the Hydrophobic Composition of Lignosulfonates. ACS Sustainable Chemistry and Engineering, 2021, 9, 16786-16795.	3.2	10
248	The in vitro synthesis of cellulose $\hat{a} \in$ " A mini-review. Carbohydrate Polymers, 2022, 285, 119222.	5.1	10
249	Protocol for characterizing the molar mass distribution and oxidized functionality profiles of aged transformer papers by gel permeation chromatography (GPC). Cellulose, 2022, 29, 2241-2256.	2.4	10
250	3-Tocopherylisoxazolines by [2+3] Cycloaddition. European Journal of Organic Chemistry, 2004, 2004, 1323-1329.	1.2	9
251	Synthesis and oxidation of â€~non-annulated' vitamin E-like compounds. Tetrahedron Letters, 2005, 46, 7845-7848.	0.7	9
252	Novel tocopheryl compounds XX. 1,3,8-Trioxaphenanthrenes derived from Î ³ -tocopherol. Tetrahedron, 2005, 61, 9070-9074.	1.0	9

#	Article	IF	CITATIONS
253	Bromination of α-tocopherol methano-dimer and ethano-dimer. Tetrahedron, 2006, 62, 1772-1776.	1.0	9
254	A matrix-resistant HPTLC method to quantify monosaccharides in wood-based lignocellulose biorefinery streams. Holzforschung, 2018, 72, 645-652.	0.9	9
255	Polyphasic Approach Utilized for the Identification of Two New Toxigenic Members of Penicillium Section Exilicaulis, P. krskae and P. silybi spp. nov Journal of Fungi (Basel, Switzerland), 2021, 7, 557.	1.5	9
256	Carbohydrate-hydroxymethylfurfural-amine adhesives: Chemorheological analysis and rheokinetic study. Polymer, 2021, 231, 124128.	1.8	9
257	Multistage fractionation of pine bark by liquid and supercritical carbon dioxide. Bioresource Technology, 2021, 341, 125862.	4.8	9
258	Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis. Data in Brief, 2022, 40, 107757.	0.5	9
259	A Concise Synthesis of N-(Trideuteromethyl)morpholine-N-oxide Monohydrate. Synlett, 1999, 1999, 1972-1974.	1.0	8
260	Novel tocopheryl compounds. Part 16: Nitration of α-tocopheryl acetate—a mechanistic study. Tetrahedron, 2003, 59, 8177-8182.	1.0	8
261	A novel approach to determination of carbonyl groups in DMAc/LiCl-insoluble pulps by fluorescence labeling. Cellulose, 2006, 13, 429-435.	2.4	8
262	On the dimers of Î ² -tocopherol. Tetrahedron, 2011, 67, 4858-4861.	1.0	8
263	Chemistry of 2,5-dihydroxyacetophenone, a Key Chromophore in Cellulosic Substrates. Mini-Reviews in Organic Chemistry, 2014, 12, 88-95.	0.6	8
264	Composition of essential oils from four Apiaceae and Asteraceae species growing in Uzbekistan. Natural Product Research, 2018, 32, 1118-1122.	1.0	8
265	Pitfalls in the chemistry of cellulosic key chromophores. Cellulose, 2019, 26, 185-204.	2.4	8
266	Wood-based resins and other bio-based binders for the production of mineral wool. Holzforschung, 2020, 74, 539-550.	0.9	8
267	Synthesis of Polyanionic Cellulose Carbamates by Homogeneous Aminolysis in an Ionic Liquid/DMF Medium. Molecules, 2022, 27, 1384.	1.7	8
268	Novel Tocopherol Compounds IV. 5-Tocopherylacetic Acid and Its Derivatives. Heterocycles, 1996, 43, 787.	0.4	7
269	Novel Tocopherol Compounds XI. Synthesis, Bromination and Oxidation Reactions of 3-(5-Tocopheryl)propionic Acid. Synlett, 1999, 1999, 291-294.	1.0	7
270	Approaches to the Preparation of 4-Benzyloxy-2-(?,?,?-D3)methylphenol, a Building Block for Labeled ?-Tocopherol, and a New Synthesis ofR,R,R-5-D3-?-Tocopherol. European Journal of Organic Chemistry, 2004, 2004, 4864-4869.	1.2	7

#	Article	IF	CITATIONS
271	Cellulosics modified with slow-release reagents. Part I. Synthesis of triazine-anchored reagents for slow release of active substances from cellulosic materials. Polymer, 2005, 46, 1453-1458.	1.8	7
272	Copper Corrosion: Comparison between Naturally Aged Papers and Artificially Aged Model Papers. Macromolecular Symposia, 2006, 244, 194-203.	0.4	7
273	Comparing soluble Trametes pubescens laccase and cross-linked enzyme crystals (CLECs) for enzymatic modification of cellulose 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung, 2009, 63, .	0.9	7
274	Synthesis of Methyl 4-O-methyl-β-D-ribo-hex-3-ulopyranoside-1-13C and Methyl 4-O-methyl-β-D-ribo-hex-3-ulopyranoside-3-13C as Fragment Analogues of Oxidized Cellulose Units. Letters in Organic Chemistry, 2010, 7, 186-190.	0.2	7
275	A cautionary note on thermal runaway reactions in mixtures of 1-alkyl-3-methylimidazolium ionic liquids and N-methylmorpholine-N-oxide. Cellulose, 2017, 24, 1927-1932.	2.4	7
276	Chromophores from hexeneuronic acids: chemical behavior under peroxide bleaching conditions. Cellulose, 2017, 24, 3689-3702.	2.4	7
277	Fire-induced structural changes and long-term stability of burned historical rag papers. Scientific Reports, 2018, 8, 12036.	1.6	7
278	Quantification of Volatiles from Technical Lignins by Multiple Headspace Sampling-Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. ACS Sustainable Chemistry and Engineering, 2019, 7, 9896-9903.	3.2	7
279	Flavone glucosides from <i>Artemisia juncea</i> . Natural Product Research, 2019, 33, 2169-2175.	1.0	7
280	Intrinsic characteristics of cellulose dissolved in an ionic liquid: the shape of a single cellulose molecule in solution. Cellulose, 2019, 26, 2233-2242.	2.4	7
281	Influence of water on the intrinsic characteristics of cellulose dissolved in an ionic liquid. Cellulose, 2020, 27, 7389-7398.	2.4	7
282	A general solvent system for the analysis of lignosulfonates by ³¹ P NMR. Analytical Methods, 2021, 13, 5502-5508.	1.3	7
283	A Novel Method for Analysis of Xanthate Group Distribution in Viscoses. Macromolecular Symposia, 2005, 223, 189-200.	0.4	6
284	Synthesis and Testing of a Novel Fluorescence Label for Carboxyls in Carbohydrates and Cellulosics. Synlett, 2005, 2005, 3087-3090.	1.0	6
285	Determination of substituent distribution of viscoses by GPC. Holzforschung, 2006, 60, 467-473.	0.9	6
286	A New Ubiquinone Metabolite and Its Activity at the Mitochondrial bc1 Complex. Chemical Research in Toxicology, 2007, 20, 591-599.	1.7	6
287	Novel tocopheryl compounds XXIV. Studies into the nitrosation chemistry of γ-tocopherol: preparation of 5-nitroso-γ-tocopherol via an organomercury derivative of vitamin E. Tetrahedron, 2007, 63, 4067-4073.	1.0	6
288	Bromination of Tocopherols: Oxidative Halogenations and Rearrangements. European Journal of Organic Chemistry, 2011, 2011, 3036-3049.	1.2	6

#	Article	IF	CITATIONS
289	Novel paper sizing agents from renewables. Part 2: Characterization of maleated high oleic sunflower oil (MSOHO). Holzforschung, 2011, 65, 13-19.	0.9	6
290	Ascorbigen – Occurrence, Synthesis, and Analytics. Mini-Reviews in Organic Chemistry, 2012, 9, 411-417.	0.6	6
291	Novel paper sizing agents based on renewables. Part 8: on the binding behavior of reactive sizing agents—the question of covalent versus adsorptive binding. Cellulose, 2016, 23, 823-836.	2.4	6
292	Recycling of Analytical Grade Solvents on a Lab Scale with a Purpose-Built Temperature-Controlled Distillation Unit. Organic Process Research and Development, 2017, 21, 578-584.	1.3	6
293	Fast Approach to the Hydrophobization of Bacterial Cellulose via the Direct Polymerization of Ethyl 2-Cyanoacrylate. Biomacromolecules, 2019, 20, 3142-3146.	2.6	6
294	Porous lyocell powders as sound absorbers. Cellulose, 2019, 26, 683-686.	2.4	6
295	Direct Quantification of Lignin in Liquors by High Performance Thin Layer Chromatography-Densitometry and Multivariate Calibration. ACS Sustainable Chemistry and Engineering, 2020, 8, 16766-16774.	3.2	6
296	Degradation of the cellulosic key chromophore 2,5-dihydroxy-[1,4]-benzoquinone (DHBQ) under conditions of chlorine dioxide pulp bleaching: formation of rhodizonate as secondary chromophore—a combined experimental and theoretical study. Cellulose, 2020, 27, 3623-3649.	2.4	6
297	On nitrogen fixation and "residual nitrogen content―in cellulosic pulps. Carbohydrate Polymers, 2021, 253, 117235.	5.1	6
298	Degradation of cellulosic key chromophores by ozone: a mechanistic and kinetic study. Cellulose, 2021, 28, 6051-6071.	2.4	6
299	Characterisation of Humic Matter Fractions Isolated from Ammonoxidised Miocene Lignite. Journal of Biobased Materials and Bioenergy, 2011, 5, 241-252.	0.1	6
300	Papyrus production revisited: differences between ancient and modern production modes. Cellulose, 2022, 29, 4931-4950.	2.4	6
301	Alkaline degradation of model compounds related to beech xylan. Holzforschung, 2004, 58, 588-596.	0.9	5
302	Isolation, Synthesis and Derivatization of Xylodextrins. Macromolecular Symposia, 2005, 232, 93-97.	0.4	5
303	Side reactions of 4-acetamido-TEMPO as the catalyst in cellulose oxidation systems. Holzforschung, 2010, 64, .	0.9	5
304	Chromophores in cellulosics, XVIII. Degradation of the cellulosic key chromophore 5,8-dihydroxy-[1,4]-naphthoquinone under conditions of chlorine dioxide pulp bleaching: a combined experimental and theoretical study. Cellulose, 2018, 25, 4941-4954.	2.4	5
305	Aerogels from Cellulose Phosphates of Low Degree of Substitution: A TBAF·H2O/DMSO Based Approach. Molecules, 2020, 25, 1695.	1.7	5
306	On the chemical interactions of the biomass processing agents Î ³ -valerolactone (GVL) and <i>N</i> -methylmorpholine- <i>N</i> -oxide (NMMO). Green Chemistry, 2021, 23, 5832-5848.	4.6	5

#	Article	IF	CITATIONS
307	Thin Layer Chromatography and the Analysis of Wood Derived Biomass - A Review. Current Chromatography, 2016, 3, 75-85.	0.1	5
308	Luteapyrone, a Novel Æ´-Pyrone Isolated from the Filamentous Fungus Metapochonia lutea. Molecules, 2021, 26, 6589.	1.7	5
309	Assessing Fireâ€Damage in Historical Papers and Alleviating Damage with Soft Cellulose Nanofibers. Small, 2022, 18, e2105420.	5.2	5
310	Crystal and molecular structure of methyl 4-O-methyl-β-d-ribo-hex-3-ulopyranoside. Carbohydrate Research, 2004, 339, 795-799.	1.1	4
311	Facile Synthesis of α,ω-Bis(5-γ-tocopheryl)alkanes. Synlett, 2005, 2005, 243-246.	1.0	4
312	Confirmation of the Presence of Hydroxyl Radicals During Preâ€Ripening of Alkali Cellulose. Journal of Wood Chemistry and Technology, 2006, 26, 53-63.	0.9	4
313	Commentary on the alleged "irregularities―in APT spectra of imidazolium-based ionic liquids. Cellulose, 2008, 15, 763-767.	2.4	4
314	A Novel Dimer of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>α </mml:mi> -Tocopherol. Research Letters in Organic Chemistry, 2008, 2008, 1-4.</mml:math 	0.6	4
315	Synthesis and characterization of several carbamoyl- and methylcarbamoyl-substituted EMPO derivatives. Bioorganic and Medicinal Chemistry, 2009, 17, 7572-7584.	1.4	4
316	Synthesis of the α-Tocopheramine-15N Model Compound 2,2,5,7,8- Pentamethyl-6-chromanylamine-15N. Letters in Organic Chemistry, 2010, 7, 335-337.	0.2	4
317	Synthesis and characterization of 5-hydroxymethyl-5-methyl-pyrroline N-oxide and its derivatives. Bioorganic and Medicinal Chemistry, 2011, 19, 985-993.	1.4	4
318	Indolylfuran, a potent aryl hydrocarbon receptor agonist from sauerkraut, interacts with the oestrogen pathway. Food Chemistry, 2011, 127, 1764-1772.	4.2	4
319	Degradation products of lignocellulosics in pulp mill effluents – comparison and evaluation of different gas chromatographic techniques for a comprehensive analysis. Holzforschung, 2012, 66, 917-925.	0.9	4
320	Novel Paper Sizing Agents Based on Renewables. Part 6: Sizing Properties of Maleated High Oleic Sunflower Oil. Journal of Wood Chemistry and Technology, 2012, 32, 51-65.	0.9	4
321	Preparation and Analysis of Cello- and Xylooligosaccharides. Advances in Polymer Science, 2015, , 53-92.	0.4	4
322	Bacterial NanoCellulose Aerogels. , 2016, , 73-108.		4
323	Synthetic and structural studies on pentafluorobenzylated imidazole systems. Journal of Fluorine Chemistry, 2019, 218, 51-62.	0.9	4
324	A cautionary note on "exothermic events―upon contact of carbodiimide coupling agents and the cellulose solvent N-methylmorpholine-N-oxide. Cellulose, 2020, 27, 7349-7359.	2.4	4

#	Article	IF	CITATIONS
325	A General Protocol for Electrospun Non-Woven Fabrics of Dialdehyde Cellulose and Poly(Vinyl) Tj ETQq1 1 0.7843	14 rgBT /	Oyerlock 1
326	Unbreakable and customizable dipping chambers for TLC and HPTLC manufactured by fused deposition modelling. Talanta, 2020, 217, 121072.	2.9	4
327	Empty Palm Fruit Bunches—A CO ₂ -Based Biorefinery Concept. Journal of Biobased Materials and Bioenergy, 2011, 5, 225-233.	0.1	4
328	An improved, less erroneous protocol for the classical "cuenâ€, "cuoxam―or "cadoxen―viscosity measurements of pulps. Cellulose, 2022, 29, 3733-3744.	2.4	4
329	Shine a light on papyrus: monitoring the aging process. Heritage Science, 2022, 10, .	1.0	4
330	Manufacturing heat-damaged papers as model materials for evaluating conservation methods. Cellulose, 2022, 29, 6373-6391.	2.4	4
331	The "Tocopherolâ^'Acetaminophen Reaction―â^' A New [1,4]-Rearrangement Discovered in Vitamin E Chemistry. European Journal of Organic Chemistry, 2001, 2001, 947-955.	1.2	3
332	Synthesis of the Cellulose Model Compound Methyl 4″-O-Methyl-β-D-Cellotrioside. Macromolecular Symposia, 2005, 232, 68-73.	0.4	3
333	Synthesis of <i>N</i> â€methylmorpholine <i>N</i> â€(¹⁷ Oâ€oxide) and <i>N</i> â€methylmorpholin <i>¹⁵N</i> â€(¹⁷ Oâ€oxide). Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 78-80.	e 0.5	3
334	Mild Friedel-Crafts Acylation of Furan with Carboxylic Acids and the Heterogeneous Catalyst Couple AlPW12O40 / Mg(OH)2. Current Organic Chemistry, 2012, 16, 2739-2744.	0.9	3
335	On the structure of the active compound in mass deacidification of paper. Holzforschung, 2012, 66, .	0.9	3
336	Effects of inorganic salts on the degradation of 2,5-dihydroxy-[1,4]-benzoquinone as a key chromophore in pulps by hydrogen peroxide under basic conditions. Holzforschung, 2015, 69, 685-693.	0.9	3
337	Fine-fibrous cellulose II aerogels of high specific surface from pulp solutions in TBAF·H ₂ O/DMSO. Holzforschung, 2018, 73, 65-81.	0.9	3
338	Phytochemical analysis and biological evaluation of Lagochilus species from Uzbekistan. Industrial Crops and Products, 2020, 154, 112715.	2.5	3
339	Self-organising maps for the exploration and classification of thin-layer chromatograms. Talanta, 2021, 233, 122460.	2.9	3
340	Facile Preparation of Mechanically Robust and Functional Silica/Cellulose Nanofiber Gels Reinforced with Soluble Polysaccharides. Nanomaterials, 2022, 12, 895.	1.9	3
341	Fiber Spinning from Cellulose Solutions in Imidazolium Ionic Liquids: Effects of Natural Antioxidants on Molecular Weight, Dope Discoloration, and Yellowing Behavior. Fibers, 2022, 10, 50.	1.8	3
342	Fluorescence labeling of C1-oxidized cellulose. Part 1: Method development. Carbohydrate Polymers, 2022, 295, 119860.	5.1	3

#	Article	IF	CITATIONS
343	Corrigendum to "Crystal and molecular structure of methyl 4-O-methyl-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside―[Carbohydr. Res. 2002, 337, 161–166]. Carbohydrate Research, 2002, 337, 1065.	1.1	2
344	Carbonyl and Carboxyl Profiles as Two Novel Parameters in Advanced Cellulose Analytics. ACS Symposium Series, 2007, , 513-530.	0.5	2
345	Ubichromanol: A prodrug to support mitochondrial ubiquinone functions?. BioFactors, 2008, 32, 83-90.	2.6	2
346	Comparative Synthesis Studies Towards Methyl and Phenyl 4-Deoxy-β-L-threo-hex-4-enopyranosiduronic Acid as Model Compounds of Hexenuronic Acid Moieties in Hardwood Pulps. Macromolecular Symposia, 2008, 262, 182-189.	0.4	2
347	Novel tocopherol derivatives. Part 32: On the bromination of pyrano[3,2-f]chromenes related to γ-tocopherol. Tetrahedron, 2011, 67, 6181-6185.	1.0	2
348	Additive Tendency of Substituent Effects onto Rate Constant of Acidic Hydrolysis of Methyl 4â€ <i>O</i> â€Methylâ€Î²â€ <scp>d</scp> â€Glucopyranoside. ChemistrySelect, 2016, 1, 5715-5720.	0.7	2
349	Cyclic peroxides as key intermediates in the degradation of cellulosic key chromophores by alkaline hydrogen peroxide: first direct proof by 170 NMR. Cellulose, 2018, 25, 3197-3203.	2.4	2
350	Robust and fast absolute quantification of a colored wood surface coating by scanning densitometry. Applied Surface Science, 2020, 505, 144568.	3.1	2
351	Strain-induced Reactivity Effects in the Reaction of 2,5-Dihydroxy-[1,4]- benzoquinone with Diamines. Current Organic Chemistry, 2021, 25, 529-538.	0.9	2
352	Oxidation with a "Stopover―– Stable Zwitterions as Intermediates in the Oxidation of αâ€Tocopherol (Vitamin E) Model Compounds to their Corresponding ortho â€Quinone Methides. ChemistryOpen, 2021, 10, 421-429.	0.9	2
353	Synthesis and analytical characterization of monomeric N-oxidized derivatives of α-tocopheramine. Monatshefte Für Chemie, 2021, 152, 959-966.	0.9	2
354	On the role of N-methylmorpholine-N-oxide (NMMO) in the generation of elemental transition metal precipitates in cellulosic materials. Cellulose, 2021, 28, 10143-10161.	2.4	2
355	Dataset for chemorheological and rheokinetic analysis of carbohydrate-HMF-amine adhesives. Data in Brief, 2021, 39, 107465.	0.5	2
356	IN-DEPTH CHARACTERIZATION OF CELLULOSIC PULPS FROM OIL PALM EMPTY FRUIT BUNCHES AND KENAF CORE, DISSOLUTION AND PREPARATION OF CELLULOSE MEMBRANES. Cellulose Chemistry and Technology, 2020, 54, 643-652.	0.5	2
357	Antioxidant Properties of Chromanols Derived from Vitamin E and Ubiquinone. Annals of the New York Academy of Sciences, 2004, 1031, 344-347.	1.8	1
358	Oxidative modifications of cellulose in the periodate system – Reduction and beta-elimination reactions. Holzforschung, 2008, , 090313094857030–.	0.9	1
359	Synthesis and characterization of 5-alkoxycarbonyl-4-hydroxymethyl-5-alkyl-pyrroline N-oxide derivatives. Bioorganic and Medicinal Chemistry, 2011, 19, 7643-7652.	1.4	1
360	Novel paper sizing agents based on renewables. Part 4: Application properties in comparison to conventional ASA sizes. Holzforschung, 2011, 65, .	0.9	1

#	Article	IF	CITATIONS
361	Chemical Characterization of Polysaccharides. , 2012, , 65-89.		1
362	Formation and Structure of a Novel Nitration Product of δ-Tocopherol. Current Organic Synthesis, 2013, 10, 165-168.	0.7	1
363	Safe and Ecological Refluxing with a Closed‣oop Air Cooling System. ChemSusChem, 2017, 10, 461-465.	3.6	1
364	Advances in biorefinery research. Holzforschung, 2018, 73, 1-2.	0.9	1
365	Degradation of the cellulosic key chromophores 2,5- and 2,6-dihydroxyacetophenone by hydrogen peroxide under alkaline conditions. Chromophores in cellulosics, XVII. Cellulose, 2018, 25, 3815-3826.	2.4	1
366	Derivatized polysaccharides on silica and hybridized with silica in chromatography and separation—A mini review. , 2020, , 441-462.		1
367	Synthesis and analytical characterization of all N–N-coupled, dimeric oxidation products of α-tocopheramine: hydrazo-, azo-, and azoxy-tocopherol. Monatshefte Für Chemie, 2021, 152, 1231-1239.	0.9	1
368	Flavonoid diversification in different leaf compartments of Primula auricula (Primulaceae). Biochemical Systematics and Ecology, 2021, 98, 104310.	0.6	1
369	Synthesis of 2-(Indol-3-yl)-ethanone-based Arylhydrocarbon Receptor Agonist Candidates via Weinreb Amides of Indole-3-acetic Acid Current Organic Synthesis, 2013, 10, 812-818.	0.7	1
370	Column: Cellulose. Polymer News, 2004, 29, 155-158.	0.1	1
371	Synthesis of Novel 3-Oxa-Chromanol Type Antioxidants. ChemInform, 2003, 34, no.	0.1	0
372	A General, Selective, High-Yield N-Demethylation Procedure for Tertiary Amines by Solid Reagents in a Convenient Column Chromatography-Like Setup ChemInform, 2004, 35, no.	0.1	0
373	A report from the 2005 Japanese-European Workshop on "Cellulose and Functional Polysaccharides― Holzforschung, 2006, 60, 465-465.	0.9	0
374	Neues von einem altbekannten Antioxidans. Nachrichten Aus Der Chemie, 2008, 56, 411-417.	0.0	0
375	Novel paper sizing agents based on renewables. Part 5: characterization of maleated oleates by ozonolysis. Holzforschung, 2012, 66, .	0.9	Ο
376	Janus-faced 5-methyl group in 2-hydroxy-5-methyl-[1,4]-benzoquinone. Tetrahedron, 2017, 73, 6421-6427.	1.0	0
377	2,4,5-Trihydroxy-3-methylacetophenone: A Cellulosic Chromophore as a Case Study of Aromaticity. ACS Omega, 2017, 2, 7929-7935.	1.6	0
378	Reaction of 2,5-dihydroxy-[1,4]-benzoquinone with nucleophiles – ipso-substitution vs. addition/elimination. Chemical Communications, 2020, 56, 12845-12848.	2.2	0

#	Article	IF	CITATIONS
379	The 15th European Workshop on Lignocellulosics and Pulp (EWLP) in Aveiro, Portugal (June 26–29,) Tj ETQq1 I	0.784314	f gBT /Ovel
380	Effect of Impregnated Phenolic Resins on the Cellulose Membrane for Polymeric Insulator. Membranes, 2022, 12, 106.	1.4	0