Norbert Hort

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5571470/norbert-hort-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

298 8,966 42 88 g-index

302 10,334 3.6 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
298	Revisiting the tolerance limit of Fe impurity in biodegradable magnesium. <i>Scripta Materialia</i> , 2022 , 212, 114509	5.6	1
297	To Fail or Not to Fail. Minerals, Metals and Materials Series, 2022, 165-168	0.3	
296	Nanomechanical Analysis and Fractography of Extruded Mg-Dy-Nd Based Alloy Influenced by Solution Heat Treatment. <i>Minerals, Metals and Materials Series</i> , 2022 , 181-187	0.3	
295	Electrical Resistivity of Binary Mg Alloys. Minerals, Metals and Materials Series, 2022, 43-49	0.3	
294	urinary compatibility of Mg-Sr-Ag alloy in swine model. <i>Bioactive Materials</i> , 2022 , 7, 254-262	16.7	1
293	Observations of Microstructure-Oriented Crack Growth in a Cast Mg-Al-Ba-Ca Alloy under Tension, Compression and Fatigue. <i>Metals</i> , 2022 , 12, 613	2.3	0
292	Characterization of the deformation state of magnesium by electrical resistance. <i>Scripta Materialia</i> , 2022 , 215, 114712	5.6	O
291	The Video Microscopy-Linked Electrochemical Cell: An Innovative Method to Improve Electrochemical Investigations of Biodegradable Metals. <i>Materials</i> , 2021 , 14,	3.5	1
290	Utilizing Synchrotron Radiation for the Characterization of Biodegradable Magnesium Alloys E rom Alloy Development to the Application as Implant Material. <i>Advanced Engineering Materials</i> , 2021 , 23, 2100197	3.5	5
289	Microstructure and mechanical properties of Mg-3Sn-1Ca reinforced with AlN nano-particles. <i>Journal of Magnesium and Alloys</i> , 2021 ,	8.8	4
288	Crack Propagation in As-Extruded and Heat-Treated Mg-Dy-Nd-Zn-Zr Alloy Explained by the Effect of LPSO Structures and Their Micro- and Nanohardness. <i>Materials</i> , 2021 , 14,	3.5	1
287	Investigations on the tensile deformation of pure Mg and Mgfl5Gd alloy by in-situ X-ray synchrotron radiation and visco-plastic self-consistent modeling. <i>Journal of Magnesium and Alloys</i> , 2021 ,	8.8	1
286	Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions. <i>Acta Biomaterialia</i> , 2021 , 121, 695-712	10.8	11
285	In vivo degradability and biocompatibility of a rheo-formed MgZnBr alloy for ureteral implantation. <i>Journal of Magnesium and Alloys</i> , 2021 ,	8.8	1
284	Effect of LPSO Phases on Crack Propagation in an Extruded MgDyNdInIr Alloy Influenced by Heat Treatment. <i>Minerals, Metals and Materials Series</i> , 2021 , 45-55	0.3	1
283	Interdiffusion and atomic mobility in hcp MgAlBn alloys. <i>Journal of Alloys and Compounds</i> , 2021 , 871, 159517	5.7	0
282	Mechanical behaviors of extruded Mg alloys with high Gd and Nd content. <i>Progress in Natural Science: Materials International</i> , 2021 , 31, 591-598	3.6	3

Microstructure and Fracture Toughness of an Extruded Mg-Dy-Nd-Zn-Zr Alloy Influenced by Heat Treatment. <i>Minerals, Metals and Materials Series</i> , 2021 , 19-26	0.3	2
Characterization of an Extruded Mg-Dy-Nd Alloy during Stress Corrosion with C-Ring Tests. <i>Metals</i> , 2020 , 10, 584	2.3	8
Effect of biaxial compressive stress state on the microstructure evolution and deformation compatibility of rolled sheet Mg alloy AZ31 at room temperature. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2020 , 789, 139599	5.3	9
Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates. <i>Journal of Magnesium and Alloys</i> , 2020 , 8, 849-859	8.8	14
Achieving enhanced mechanical properties in Mg-Gd-Y-Zn-Mn alloy by altering dynamic recrystallization behavior via pre-ageing treatment. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 790, 139635	5.3	18
Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting. <i>Journal of Materials Science and Technology</i> , 2020 , 52, 72-82	9.1	9
Investigation on the Microstructure and Mechanical Properties of Mg[Gd]dd Ternary Alloys. <i>Minerals, Metals and Materials Series</i> , 2020 , 79-85	0.3	
Effect of Nd Additions on the Mechanical Properties of Mg Binary Alloys. <i>Jom</i> , 2020 , 72, 517-525	2.1	1
Formation mechanism of the abnormal texture during extrusion in Mg-Y-Sm-Zn-Zr alloy. <i>Journal of Alloys and Compounds</i> , 2020 , 821, 153477	5.7	8
In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. <i>Acta Biomaterialia</i> , 2020 , 116, 415-425	10.8	16
Effects of Intermetallic Microstructure on Degradation of Mg-5Nd Alloy. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2020 , 51, 5498-5515	2.3	4
Restoration Mechanisms at Moderate Temperatures for As-Cast ZK40 Magnesium Alloys Modified with Individual Ca and Gd Additions. <i>Crystals</i> , 2020 , 10, 1140	2.3	O
Effects of samarium content on microstructure and mechanical properties of MgD.5ZnD.5Zr alloy. Journal of Materials Science and Technology, 2019 , 35, 1368-1377	9.1	42
Abnormal extrusion texture and reversed yield asymmetry in a Mg\(\mathbb{M}\)-Sm-Zn-Zr alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 760, 426-430	5.3	15
Calculation of Schmid factor in Mg alloys: Influence of stress state. <i>Scripta Materialia</i> , 2019 , 171, 31-35	5.6	26
Influences of AlN/Al Nanoparticles on the Creep Properties of Elektron21 Prepared by High Shear Dispersion Technology. <i>Jom</i> , 2019 , 71, 2245-2252	2.1	1
Unexpected Expansion Behavior of Mg-Al Alloys During Isothermal Ageing. <i>Jom</i> , 2019 , 71, 2906-2912	2.1	2
Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase. <i>Journal of Alloys and Compounds</i> , 2019 , 795, 436-445	5.7	30
	Treatment. Minerals, Metals and Materials Series, 2021, 19-26 Characterization of an Extruded Mg-Dy-Nd Alloy during Stress Corrosion with C-Ring Tests. Metals, 2020, 10, 584 Effect of biaxial compressive stress state on the microstructure evolution and deformation compatibility of rolled sheet Mg alloy A231 at room temperature. Materials Science & Mg; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139599 Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates. Journal of Magnesium and Alloys, 2020, 8, 849-859 Achieving enhanced mechanical properties in Mg-Gd-Y-Zn-Mn alloy by altering dynamic recrystallization behavior via pre-ageing treatment. Materials Science & Mg; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139635 Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting. Journal of Materials Science and Technology, 2020, 52, 72-82 Investigation on the Microstructure and Mechanical Properties of Mg Binary Alloys. Jom, 2020, 72, 517-525 Effect of Nd Additions on the Mechanical Properties of Mg Binary Alloys. Jom, 2020, 72, 517-525 Formation mechanism of the abnormal texture during extrusion in Mg-Y-Sm-Zn-Zr alloy. Journal of Alloys and Compounds, 2020, 821, 153477 In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Acta Biomaterialia, 2020, 116, 415-425 Effects of Intermetallic Microstructure on Degradation of Mg-Snd Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5498-5515 Restoration Mechanisms at Moderate Temperatures for As-Cast ZK40 Magnesium Alloys Modified with Individual Ca and Gd Additions. Crystals, 2020, 10, 1140 Effects of samarium content on microstructure and mechanical properties of MgB.SznD.Szn B.Szr alloy. Journal of Materials Science and Technology, 2019, 35, 1368-1377 Abnormal extrusion te	Characterization of an Extruded Mg-Dy-Nd Alloy during Stress Corrosion with C-Ring Tests. Metals, 2020, 10, 584 Effect of biaxial compressive stress state on the microstructure evolution and deformation compatibility of rolled sheet Mg alloy A231 at room temperature. Materials Science & Dy-Ringineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139599 Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates. Journal of Magnesium and Alloys, 2020, 8, 849-859 Achieving enhanced mechanical properties in Mg-Gd-Y-Zn-Mn alloy by altering dynamic recrystallization behavior via pre-ageing treatment. Materials Science & Dynamic Explorering A: Structural Materials: Properties of Iarge-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting. Journal of Materials Science and Technology, 2020, 790, 139635 Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting. Journal of Materials Science and Technology, 2020, 52, 72-82 Investigation on the Microstructure and Mechanical Properties of MgBddlid Ternary Alloys. Minerals, Metals and Materials Science, 2020, 79-85 Effect of Nd Additions on the Mechanical Properties of Mg Binary Alloys. Jom, 2020, 72, 517-525 2.1 Formation mechanism of the abnormal texture during extrusion in Mg-Y-Sm-Zn-Zr alloy. Journal of Alloys and Compounds, 2020, 821, 153477 In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Acta Biomaterialia, 2020, 116, 415-425 Effects of Intermetallic Microstructure on Degradation of Mg-SNd Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5498-5515 Restoration Mechanisms at Moderate Temperatures for As-Cast ZK40 Magnesium Alloys Modified with Individual Ca and Gd Additions. Crystals, 2020, 10, 1140 Effects of samarium content on microstructure and mechanical properties of MgB.Sznd. Szience Amp. Engineering A: St

263	Microscopic deformation compatibility during biaxial tension in AZ31 Mg alloy rolled sheet at room temperature. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 756, 1-10	5.3	8
262	Effect of Alloying with Rare-Earth Metals on the Degradation of Magnesium Alloys Studied Using a Combination of Isothermal Calorimetry and Pressure Measurements. <i>Minerals, Metals and Materials Series</i> , 2019 , 121-126	0.3	2
261	Grain refinements of magnesium alloys inoculated by additions of external SiC particles. <i>IOP Conference Series: Materials Science and Engineering</i> , 2019 , 529, 012049	0.4	1
260	Influence of Torsion on Precipitation and Hardening Effects during Aging of an Extruded AZ91 Alloy. <i>Journal of Materials Engineering and Performance</i> , 2019 , 28, 4403-4414	1.6	4
259	Microstructures, Corrosion and Mechanical Properties of MgBi Alloys as Biodegradable Implant Materials. <i>Minerals, Metals and Materials Series</i> , 2019 , 151-157	0.3	
258	Influences of SiC Particle Additions on the Grain Refinement of MgIn Alloys. <i>Minerals, Metals and Materials Series</i> , 2019 , 331-338	0.3	1
257	Microstructures and mechanical properties of a hot-extruded MgBGdBYbfl.2ZnD.5Zr (wt%) alloy. <i>Journal of Alloys and Compounds</i> , 2019 , 776, 666-678	5.7	29
256	Intermetallic Phase Characteristics in the MgNdIn System. <i>Minerals, Metals and Materials Series</i> , 2018 , 391-397	0.3	
255	Unraveling Recrystallization Mechanisms Governing Texture Development from Rare-Earth Element Additions to Magnesium. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2018 , 49, 1809-1829	2.3	34
254	Corrosion behaviour of as-cast ZK40 with CaO and Y additions. <i>Transactions of Nonferrous Metals Society of China</i> , 2018 , 28, 427-439	3.3	7
253	Study on MgBiBr Ternary Alloys for Biomedical Applications. <i>Minerals, Metals and Materials Series</i> , 2018 , 413-424	0.3	
252	Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D). <i>Journal of Materials Engineering and Performance</i> , 2018 , 27, 1440-1449	1.6	1
251	Influences of Yttrium Content on Microstructure and Mechanical Properties of as-cast Mgtattr Alloys. <i>Minerals, Metals and Materials Series</i> , 2018 , 91-97	0.3	
250	Mg Alloys: Challenges and Achievements in Controlling Performance, and Future Application Perspectives. <i>Minerals, Metals and Materials Series</i> , 2018 , 3-14	0.3	6
249	Microstructure and Mechanical Properties of Mg-Gd Alloys as Biodegradable Implant Materials. <i>Minerals, Metals and Materials Series</i> , 2018 , 253-262	0.3	1
248	Magnesium-Based Metal Matrix Nanocomposites P rocessing and Properties. <i>Minerals, Metals and Materials Series</i> , 2018 , 679-691	0.3	4
247	The Effect of Solid Solute and Precipitate Phase on Young's Modulus of Binary MgRE Alloys. <i>Advanced Engineering Materials</i> , 2018 , 20, 1800271	3.5	7
246	Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn Alloy. <i>Metals</i> , 2018 , 8, 216	2.3	6

(2017-2018)

245	Enhancement of Strength and Hot Workability of AZX312 Magnesium Alloy by Disintegrated Melt Deposition (DMD) Processing in Contrast to Permanent Mold Casting. <i>Metals</i> , 2018 , 8, 437	2.3	4
244	Precipitation Hardening on Mechanical and Corrosion Properties of Extruded Mg10Gd Modified with Nd and La. <i>Metals</i> , 2018 , 8, 640	2.3	7
243	Strengthening and ductilizing of magnesium alloying with heavy rare earth elements. <i>MATEC Web of Conferences</i> , 2018 , 188, 03021	0.3	2
242	Current development of creep-resistant magnesium cast alloys: A review. <i>Materials and Design</i> , 2018 , 155, 422-442	8.1	82
241	The effect of Y addition on recrystallization and mechanical properties of MgBZnBYD.5CeD.4Zr alloys. <i>Vacuum</i> , 2018 , 155, 445-455	3.7	25
240	Effects of Gd solutes on hardness and yield strength of Mg alloys. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 724-730	3.6	30
239	Phase Formation during Solidification of Mg-Nd-Zn Alloys: An In Situ Synchrotron Radiation Diffraction Study. <i>Materials</i> , 2018 , 11,	3.5	3
238	Connected Process Design for Hot Working of a Creep-Resistant Mg🏿 Al 🗓 Ba 🖟 Ca Alloy (ABa X422). <i>Metals</i> , 2018 , 8, 463	2.3	1
237	Review on Hot Working Behavior and Strength of Calcium-Containing Magnesium Alloys. <i>Advanced Engineering Materials</i> , 2018 , 20, 1701102	3.5	12
236	Effects of extrusion ratio and annealing treatment on the mechanical properties and microstructure of a MgIl1GdIl.5YIlNdIl.5ZnIl.5Zr (wt%) alloy. <i>Journal of Materials Science</i> , 2017 , 52, 6670-6686	4.3	14
235	3D Microstructural Evolution on Solidifying MgBNdBZn Alloy Observed via In Situ Synchrotron Tomography. <i>Minerals, Metals and Materials Series</i> , 2017 , 605-612	0.3	2
234	Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium. <i>Materials Science and Engineering C</i> , 2017 , 75, 1351-1358	8.3	15
233	Recent research and developments on wrought magnesium alloys. <i>Journal of Magnesium and Alloys</i> , 2017 , 5, 239-253	8.8	301
232	Microstructure and mechanical characterization of cast Mg-Ca-Si alloys. <i>Journal of Alloys and Compounds</i> , 2017 , 694, 767-776	5.7	8
231	Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys. <i>Materials Science and Engineering C</i> , 2017 , 71, 25-34	8.3	28
230	As cast microstructures on the mechanical and corrosion behaviour of ZK40 modified with Gd and Nd additions. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2017 , 682, 238-247	5.3	20
229	Microhardness and In Vitro Corrosion of Heat-Treated Mg-Y-Ag Biodegradable Alloy. <i>Materials</i> , 2017 , 10,	3.5	16
228	High Temperature Strength and Hot Working Technology for As-Cast Mg@Zn@Ca (ZX11) Alloy. <i>Metals</i> , 2017 , 7, 405	2.3	8

227	Optimization of Thermo-Mechanical Processing for Forging of Newly Developed Creep-Resistant Magnesium Alloy ABaX633. <i>Metals</i> , 2017 , 7, 513	2.3	3
226	Mechanism of Dynamic Recrystallization and Evolution of Texture in the Hot Working Domains of the Processing Map for Mg-4Al-2Ba-2Ca Alloy. <i>Metals</i> , 2017 , 7, 539	2.3	5
225	Influence of the Microstructure and Silver Content on Degradation, Cytocompatibility, and Antibacterial Properties of Magnesium-Silver Alloys In Vitro. <i>Oxidative Medicine and Cellular Longevity</i> , 2017 , 2017, 8091265	6.7	30
224	Effects of Mn and Zn Solutes on Grain Refinement of Commercial Pure Magnesium. <i>Minerals, Metals and Materials Series</i> , 2017 , 191-198	0.3	1
223	Effects of Gadolinium and Neodymium Addition on Young Modulus of Magnesium-Based Binary Alloys. <i>Minerals, Metals and Materials Series</i> , 2017 , 341-347	0.3	1
222	Voltammetric Studies of Extruded Pure Magnesium in Different Electrolytes and Its Corrosion Morphology. <i>Minerals, Metals and Materials Series</i> , 2017 , 429-437	0.3	2
221	Effect of the Zn Content on the Compression Behaviour of Mg5Nd(Zn): An In Situ Synchrotron Radiation Diffraction Study. <i>Minerals, Metals and Materials Series</i> , 2017 , 675-681	0.3	
220	Creep behavior of Mgfl0Gd\(\mathbb{B}\)Zn (x=2 and 6 wt%) alloys. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2016 , 649, 158-167	5.3	15
219	Unexpected formation of hydrides in heavy rare earth containing magnesium alloys. <i>Journal of Magnesium and Alloys</i> , 2016 , 4, 173-180	8.8	24
218	Role of Sic in Grain Refinement of Aluminum-Free Mg-Zn Alloys 2016 , 177-181		
218	Role of Sic in Grain Refinement of Aluminum-Free Mg-Zn Alloys 2016 , 177-181 Hot Tearing Susceptibility of Mg-5Nd-xZn Alloys 2016 , 129-134		
		3.5	17
217	Hot Tearing Susceptibility of Mg-5Nd-xZn Alloys 2016 , 129-134 Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Castability .	3.5	17
217 216	Hot Tearing Susceptibility of Mg-5Nd-xZn Alloys 2016 , 129-134 Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Castability . <i>Advanced Engineering Materials</i> , 2016 , 18, 953-962 Forging of cast Mg-3Sn-2Ca-0.4Al-0.4Si magnesium alloy using processing map. <i>Journal of</i>		
217 216 215	Hot Tearing Susceptibility of Mg-5Nd-xZn Alloys 2016, 129-134 Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Castability . Advanced Engineering Materials, 2016, 18, 953-962 Forging of cast Mg-3Sn-2Ca-0.4Al-0.4Si magnesium alloy using processing map. Journal of Mechanical Science and Technology, 2016, 30, 2699-2705 Microstructure evolution of Mg11Gd1.5Y1Nd1.5Zn0.5Zr (wt%) alloy during deformation and its effect on strengthening. Materials Science & Camp; Engineering A: Structural Materials: Properties,	1.6	4
217 216 215	Hot Tearing Susceptibility of Mg-5Nd-xZn Alloys 2016 , 129-134 Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Castability . <i>Advanced Engineering Materials</i> , 2016 , 18, 953-962 Forging of cast Mg-3Sn-2Ca-0.4Al-0.4Si magnesium alloy using processing map. <i>Journal of Mechanical Science and Technology</i> , 2016 , 30, 2699-2705 Microstructure evolution of Mg@1Gd@.5Y@Nd@.5Zn@.5Zr (wt%) alloy during deformation and its effect on strengthening. <i>Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing</i> , 2016 , 657, 259-268	1.6 5.3	14
217 216 215 214 213	Hot Tearing Susceptibility of Mg-5Nd-xZn Alloys 2016, 129-134 Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Castability. Advanced Engineering Materials, 2016, 18, 953-962 Forging of cast Mg-3Sn-2Ca-0.4Al-0.4Si magnesium alloy using processing map. Journal of Mechanical Science and Technology, 2016, 30, 2699-2705 Microstructure evolution of MgIIGdI.5YINdII.5ZnII.5Zr (wt%) alloy during deformation and its effect on strengthening. Materials Science & Damp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 259-268 Hot tearing characteristics of MgIICaIIZn alloys. Journal of Materials Science, 2016, 51, 2687-2704 An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg-1Sr alloy. Acta	1.6 5·3 4·3	4 14 23

Hot Tearing Susceptibility of Mg-5Nd-xZn Alloys **2016**, 129-134

	not realing susceptibility of Mg-sind-x211Alloys 2010 , 129-134		
208	Advances in Manufacturing Processes for Magnesium Alloys 2016 , 19-24		1
207	Elevated Temperature and Varied Load Response of AS41 at Bolted Joint 2016 , 511-516		
206	Solid Solution Strengthening in Mg-Gd Alloys 2016 , 135-139		
205	In Vitro Corrosion and Cytocompatibility Properties of Mg-2Gd-X(Ag, Ca) Alloys 2016 , 347-351		
204	In Situ Synchrotron Radiation Diffraction of The Solidificationof Mg-Dy(-Zr) Alloys 2016 , 15-21		
203	Thermodynamic Description of Reactions between Mg and CaO 2016 , 67-72		1
202	The Role of Zn on the Elevated Temperature Compression Behavior of Mg5Nd: An In Situ Synchrotron Radiation Diffraction Study. <i>Jom</i> , 2016 , 68, 3051-3056	2.1	2
201	In vivo degradation of binary magnesium alloys 🗈 long-term study. <i>BioNanoMaterials</i> , 2016 , 17,		8
200	In Vitro Corrosion and Cytocompatibility Properties of Mg-2Gd-X(Ag, Ca) Alloys 2016 , 347-351		0
199	Influence of Precipitation Hardening in Mg-Y-Nd on Mechanical and Corrosion Properties. <i>Jom</i> , 2016 , 68, 1183-1190	2.1	15
198	In situ synchrotron radiation diffraction investigation of the compression behaviour at 350°C of ZK40 alloys with addition of CaO and Y. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2016 , 664, 2-9	5.3	10
197	Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. <i>Acta Biomaterialia</i> , 2016 , 36, 350-60	10.8	52
196	Solid Solution Strengthening in Mg-Gd Alloys 2016 , 135-139		2
195	Comparative study of microstructure and texture of cast and homogenized TX32 magnesium alloy after hot deformation. <i>Metals and Materials International</i> , 2015 , 21, 134-146	2.4	7
194	High temperature mechanical behavior of an extruded Mg🛭 1Gd🖺.5Y🖺 Nd🛈.5Zn 🛈.5Zr (wt%) alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 645, 213-224	5.3	14
193	Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary MgAl alloys. <i>Journal of Alloys and Compounds</i> , 2015 , 648, 759-770	5.7	32
192	Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Microstructure, Tensile Properties, and Creep Resistance. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 3543-3554	2.3	91

191	Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015 , 47, 38-48	4.1	30
190	Twin-Roll Casting after Intensive Melt Shearing and Subsequent Rolling of an AM30 Magnesium Alloy with Addition of CaO and SiC. <i>Materials Science Forum</i> , 2015 , 828-829, 35-40	0.4	3
189	In situ synchrotron radiation diffraction study of the role of Gd, Nd on the elevated temperature compression behavior of ZK40. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 640, 129-136	5.3	10
188	Hot Tearing Susceptibility of Mg-Ca Binary Alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 6003-6017	2.3	17
187	High Strength Magnesium Alloys Through Precipitation Hardening and Micro Alloying: Considerations for Alloy Design. <i>Jom</i> , 2015 , 67, 2427-2432	2.1	7
186	Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications. <i>Materials Science Forum</i> , 2015 , 828-829, 165-171	0.4	4
185	Microstructural evolution and mechanical properties of Mg@11Gd@.5Y@Nd@.5Zn@.5Zr alloy prepared via pre-ageing and hot extrusion. <i>Materials Science & Description of the Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2015, 624, 23-31	5.3	55
184	Fabrication of a high strength Mg🛘 1Gd🗸.5Y🖟 Nd🛈.5Zn 🛈.5Zr (wt%) alloy by thermomechanical treatments. <i>Materials Science & Description of Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 622, 121-130	5.3	78
183	CaO dissolution during melting and solidification of a MgIIO wt.% CaO alloy detected with in situ synchrotron radiation diffraction. <i>Journal of Alloys and Compounds</i> , 2015 , 618, 64-66	5.7	21
182	Twinning Assisted Crack Propagation of Magnesium-Rare Earth Casting and Wrought Alloys under Bending. <i>Materials Science Forum</i> , 2015 , 828-829, 311-317	0.4	5
181	Cytotoxicity of the Ga-containing coatings on biodegradable magnesium alloys. <i>Surface Innovations</i> , 2015 , 3, 10-19	1.9	7
180	Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications 2015 , 425-429		
179	Mechanical and Corrosive Properties of Two Magnesium Wires: Mg4Gd and Mg6Ag 2015 , 393-398		3
178	Mechanical and Corrosive Properties of Two Magnesium Wires: Mg4Gd and Mg6Ag 2015 , 391-398		
177	Magnesium Melt Protection. <i>Materials Science Forum</i> , 2015 , 828-829, 78-81	0.4	7
176	Effect of Zn addition on hot tearing behaviour of MgD.5CaNZn alloys. <i>Materials and Design</i> , 2015 , 87, 157-170	8.1	30
175	Histological Comparison of New Biodegradable Magnesium-Based Implants for Maxillofacial Applications. <i>Journal of Maxillofacial and Oral Surgery</i> , 2015 , 14, 637-645	0.9	10
174	An Investigation on Hot Tearing of Mg-4.5Zn-(0.5Zr) Alloys with Y Additions. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 2108-2118	2.3	23

173	In Situ Investigation of Microstructure Evolution during Solidification of Mg10CaxGd (x=5, 10, 20) Alloys. <i>Acta Physica Polonica A</i> , 2015 , 128, 606-611	0.6	2
172	Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications 2015 , 425-429		
171	Investigations on microstructures, mechanical and corrosion properties of Mgtdln alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595, 224-234	5.3	84
170	In vitro mechanical and corrosion properties of biodegradable MgAg alloys. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2014 , 65, 569-576	1.6	51
169	Study of hot forging behavior of as-cast MgBAllIZnI2Ca alloy towards optimization of its hot workability. <i>Materials & Design</i> , 2014 , 57, 697-704		28
168	Understanding effects of microstructural inhomogeneity on creep response INew approaches to improve the creep resistance in magnesium alloys. <i>Journal of Magnesium and Alloys</i> , 2014 , 2, 124-132	8.8	19
167	Measurement and calculation of the viscosity of metals review of the current status and developing trends. <i>Measurement Science and Technology</i> , 2014 , 25, 062001	2	33
166	Hot tearing mechanisms of B206 aluminumdopper alloy. <i>Materials & Design</i> , 2014 , 64, 44-55		33
165	Effect of aluminum on microstructural evolution during hot deformation of TX32 magnesium alloy. Journal of Materials Science, 2014 , 49, 5885-5898	4.3	7
164	A Study on the Hot Deformation Behavior of Cast Mg-4Sn-2Ca (TX42) Alloy. <i>Jom</i> , 2014 , 66, 322-328	2.1	4
163	Advances in Manufacturing Processes for Magnesium Alloys 2014 , 19-24		O
162	Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32 D .4Al magnesium alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 606, 11-23	5.3	12
161	Microstructures and mechanical properties of pure Mg processed by rotary swaging. <i>Materials & Design</i> , 2014 , 63, 83-88		34
160	Modification of Magnesium Alloys by Ceramic Particles in Gravity Die Casting. <i>International Journal of Metals</i> , 2014 , 2014, 1-7		2
159	Investigation of hot workability behavior of as-cast MgBSnDCa (TX52) magnesium alloy through processing map. <i>Production and Manufacturing Research</i> , 2014 , 2, 241-252	3.3	3
158	Mechanical Properties and Microstructures of Nano SiC Reinforced ZE10 Composites Prepared with Ultrasonic Vibration. <i>Advanced Materials Research</i> , 2014 , 1019, 169-176	0.5	1
157	Corrosion behavior of Mgtdtn based alloys in aqueous NaCl solution. <i>Journal of Magnesium and Alloys</i> , 2014 , 2, 245-256	8.8	51
156	Residual Stresses of the As-Cast Mg-xCa Alloys with Hot Sprues by Neutron Diffraction. <i>Advanced Materials Research</i> , 2014 , 996, 592-597	0.5	

155	Deformation-Induced Dynamic Precipitation during Creep in Magnesium-Tin Alloys. <i>Key Engineering Materials</i> , 2014 , 627, 365-368	0.4	1
154	Hot Forging of Cast Magnesium Alloy TX31 Using Semi-Closed Die and its Finite Element Simulation. <i>Materials Science Forum</i> , 2014 , 783-786, 449-454	0.4	1
153	Microstructure and Compression Creep Strength of the Newly Developed Magnesium Alloy DieMag422. <i>Advanced Materials Research</i> , 2014 , 1019, 177-183	0.5	
152	Influence of Nd in Extruded Mg10Gd Base Alloys on Fatigue Strength. <i>Materials Science Forum</i> , 2014 , 783-786, 419-424	0.4	3
151	Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys. <i>Journal of Magnesium and Alloys</i> , 2014 , 2, 1-7	8.8	61
150	The interaction of precipitation and deformation in a binary Mgta alloy at elevated temperatures. <i>Materials Science & Materials Science & Materials Science & Microstructure and Processing</i> , 2014 , 609, 116-124	5.3	3
149	Experimental and numerical analysis of hot tearing susceptibility for MgI alloys. <i>Journal of Materials Science</i> , 2014 , 49, 353-362	4.3	35
148	Crack Propagation Under Bending in Cast Mg10GdxNd-T4 Alloys 2014 , 77-82		
147	Investigation of biodegradation behaviour of an Mg-1Ca alloy influenced by heat treatment and applying plasma-chemical oxidation layers. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2013 , 64, 578-584	1.6	5
146	Hot Tearing Characteristics of Binary Mg-Gd Alloy Castings. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2013 , 44, 2285-2298	2.3	32
145	Bulk and local textures of pure magnesium processed by rotary swaging. <i>Journal of Magnesium and Alloys</i> , 2013 , 1, 341-345	8.8	17
144	Hot tearing susceptibility of binary Mg🛭 alloy castings. <i>Materials & Design</i> , 2013 , 47, 90-100		63
143	Thermodynamic assessment and experimental study of Mgtd alloys. <i>Journal of Alloys and Compounds</i> , 2013 , 581, 166-177	5.7	39
142	Microstructure and mechanical properties of as-cast MgBnffa alloys and effect of alloying elements. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 3604-3610	3.3	30
141	Microstructure, mechanical and corrosion properties of Mg-Dy-Gd-Zr alloys for medical applications. <i>Acta Biomaterialia</i> , 2013 , 9, 8499-508	10.8	64
140	Effects of Sn segregation and precipitates on creep response of Mg-Sn alloys. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2013 , 36, 308-315	3	12
139	Influence of Ce addition on microstructure and mechanical properties of high pressure die cast AM50 magnesium alloy. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 66-72	3.3	22
138	Element distribution in the corrosion layer and cytotoxicity of alloy Mg-10Dy during in vitro biodegradation. <i>Acta Biomaterialia</i> , 2013 , 9, 8475-87	10.8	72

137	Nucleation mechanism of Mg17Al12-precipitates in binary Mg🏿 wt.% Al alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 557, 73-76	5.7	9
136	Fast escape of hydrogen from gas cavities around corroding magnesium implants. <i>Acta Biomaterialia</i> , 2013 , 9, 8714-21	10.8	184
135	Effect of calcium addition on the hot working behavior of as-cast AZ31 magnesium alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 588, 272-279	5.3	21
134	In situ synchrotron diffraction of the solidification of Mg4Y3Nd. <i>Materials Letters</i> , 2013 , 102-103, 62-64	3.3	31
133	Development of a magnesium secondary alloy system for mixed magnesium post-consumer scrap. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 576, 222-230	5.3	6
132	Comparison of different in vitro tests for biocompatibility screening of Mg alloys. <i>Acta Biomaterialia</i> , 2013 , 9, 8740-5	10.8	37
131	A New Magnesium Alloy System: TEXAS 2013 , 231-235		
130	Nucleation Kinetics of the Phase in a Binary Mg-Al Alloy 2013 , 259-262		1
129	Hot workability analysis with processing map and texture characteristics of as-cast TX32 magnesium alloy. <i>Journal of Materials Science</i> , 2013 , 48, 5236-5246	4.3	20
128	High Temperature Deformation and Microstructural Features of TXA321 Magnesium Alloy: Correlations with Processing Map. <i>Advanced Engineering Materials</i> , 2013 , 15, 761-766	3.5	6
127	Residual Stresses in the Hot Sprues of as-cast Mg-Zn Alloys Investigated by STRESS-SPEC Neutron Diffractometer. <i>Materials Science Forum</i> , 2013 , 768-769, 428-432	0.4	
126	Compressive strength and hot deformation mechanisms in as-cast Mg-4Al-2Ba-2Ca (ABaX422) alloy. <i>Philosophical Magazine</i> , 2013 , 93, 4364-4377	1.6	14
125	Microstructure, Mechanical and Corrosion Properties of Mg-Gd-Zn Alloys. <i>Materials Science Forum</i> , 2013 , 765, 28-32	0.4	4
124	Study of the Solidification of AS Alloys Combining In Situ Synchrotron Diffraction and Differential Scanning Calorimetry. <i>Materials Science Forum</i> , 2013 , 765, 286-290	0.4	14
123	Effect of Grain Size and Structure, Solid Solution Elements, Precipitates and Twinning on Nanohardness of Mg-RE Alloys. <i>Materials Science Forum</i> , 2013 , 765, 491-495	0.4	4
122	Influences of Y Additions on the Hot Tearing Susceptibility of Mg-1.5wt.%Zn Alloys. <i>Materials Science Forum</i> , 2013 , 765, 306-310	0.4	10
121	Zone coulometry and ion-release analysis of degradable magnesium alloys. <i>Emerging Materials Research</i> , 2013 , 2, 248-262	1.4	2
120	Mechanical properties and corrosion behaviour of freestanding, precipitate-free magnesium WE43 thin films. <i>International Journal of Materials Research</i> , 2013 , 104, 286-292	0.5	7

119	Tailoring properties of cast Mg10Gd by alloying Nd and heat treatment. <i>Emerging Materials Research</i> , 2013 , 2, 229-238	1.4	5
118	A new magnesium alloy system: TEXAS 2013 , 231-235		
117	Ion release from magnesium materials in physiological solutions under different oxygen tensions. Journal of Materials Science: Materials in Medicine, 2012 , 23, 9-24	4.5	36
116	Hot Tearing Susceptibility of Magnesium Gadolinium Binary Alloys. <i>Transactions of the Indian Institute of Metals</i> , 2012 , 65, 701-706	1.2	3
115	High ductile as-cast Mg R E based alloys at room temperature. <i>Materials Letters</i> , 2012 , 83, 209-212	3.3	14
114	Hot deformation behavior of Mg¤Sn¤Ca alloy in as-cast condition and after homogenization. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 444-450	5.3	41
113	Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting. <i>Corrosion Science</i> , 2012 , 61, 185-207	6.8	129
112	Polycrystalline and amorphous MgZnCa thin films. <i>Corrosion Science</i> , 2012 , 63, 234-238	6.8	20
111	Influence of cerium additions on the corrosion behaviour of high pressure die cast AM50 alloy. <i>Corrosion Science</i> , 2012 , 65, 145-151	6.8	47
110	Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg-Dy alloys. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 13, 36-44	4.1	48
109	Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloy. <i>Materials Chemistry and Physics</i> , 2012 , 136, 1081-1091	4.4	19
108	Metal Matrix Composites: Magnesium 2012 , 1		1
107	Hot Deformation Mechanisms in AZ31 Magnesium Alloy Extruded at Different Temperatures: Impact of Texture. <i>Metals</i> , 2012 , 2, 292-312	2.3	15
106	Identification of unexpected hydrides in MgI0 wt% Dy alloy by high-brilliance synchrotron radiation. <i>Journal of Applied Crystallography</i> , 2012 , 45, 17-21	3.8	14
105	Development of High Performance Single-Phase Solid Solution Magnesium Alloy at Low Temperature. <i>Advanced Engineering Materials</i> , 2012 , 14, 178-184	3.5	8
104	The formation of Sr6.33Mg16.67Si13 in magnesium alloy AM50 and its effect on mechanical properties. <i>Journal of Materials Science</i> , 2012 , 47, 5461-5469	4.3	2
103	Effects of corrosion environment and proteins on magnesium corrosion. <i>Corrosion Engineering Science and Technology</i> , 2012 , 47, 335-339	1.7	55
102	Deformation Microstructures and Textures of Cast Mg-3Sn-2Ca Alloy under Uniaxial Hot Compression. <i>Applied Mechanics and Materials</i> , 2012 , 152-154, 322-325	0.3	

Mechanical and Corrosion Properties of as-cast and Extruded MG10GD alloy for Biomedical Application **2012**, 253-259

100	Biodegradable Magnesium Implants - How Do They Corrode in-vivo? 2011 , 17-17		1
99	Investigations on Hot Tearing of Mg-Zn-(Al) Alloys 2011 , 125-130		11
98	Mechanical and corrosion properties of binary MgDy alloys for medical applications. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1827-1834	3.1	65
97	Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1797-1801	3.1	25
96	Reprint of: Improved cytotoxicity testing of magnesium materials. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1773-1777	3.1	49
95	Blood triggered corrosion of magnesium alloys. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1761-1766	3.1	38
94	Effect of fetal calf serum on the corrosion behaviour of magnesium alloys. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1746-1755	3.1	13
93	Mechanism of grain refinement of MgAl alloys by SiC inoculation. <i>Scripta Materialia</i> , 2011 , 64, 793-796	5.6	60
92	Magnesium: An essential nutrient for a good biomaterial. <i>Jom</i> , 2011 , 63, 99-99	2.1	5
91	Chemical surface alteration of biodegradable magnesium exposed to corrosion media. <i>Acta Biomaterialia</i> , 2011 , 7, 2704-15	10.8	151
90	Compressive strength and hot deformation behavior of TX32 magnesium alloy with 0.4% Al and 0.4% Si additions. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 6964-6970	5.3	26
89	Improved cytotoxicity testing of magnesium materials. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 830-834	3.1	79
88	Effect of yttrium addition on lattice parameter, Young's modulus and vacancy of magnesium. Materials Science & Lamp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2106-2109	5.3	33
87	Magnesium (Mg) corrosion: a challenging concept for degradable implants 2011 , 403-425		4
86	In Situ Studies of Light Metals with Synchrotron Radiation and Neutrons. <i>Materials Science Forum</i> , 2011 , 690, 192-197	0.4	
85	Corrosion Behavior of As-Cast Binary Mg-Dy Alloys. <i>Materials Science Forum</i> , 2011 , 690, 417-421	0.4	5
84	Mechanical Behaviour and Corrosion Performance of Thin Film Magnesium WE Alloys. <i>Materials Science Forum</i> , 2011 , 690, 286-289	0.4	4

83	Magnesium Permanent Mold Castings Optimization. Materials Science Forum, 2011, 690, 65-68	0.4	59
82	Cyclic Deformation of Newly Developed Magnesium Cast Alloys in Corrosive Environment. <i>Materials Science Forum</i> , 2011 , 690, 495-498	0.4	4
81	Influence of Cerium on the Formation of Micro-Galvanic Corrosion Elements of AZ91. <i>Materials Science Forum</i> , 2011 , 690, 381-384	0.4	2
80	Modeling Bolt Load Retention of Ca Modified AS41 Using Compliance-Creep Method. <i>Materials Science Forum</i> , 2011 , 690, 278-281	0.4	
79	Compression Creep at 240°C of Extruded Magnesium Alloys Containing Gadolinium. <i>Materials Science Forum</i> , 2011 , 690, 270-273	0.4	7
78	Influence of composition on hot tearing in binary MgZn alloys. <i>International Journal of Cast Metals Research</i> , 2011 , 24, 170-176	1	44
77	Castability of some Magnesium Alloys in a Novel Castability Die. <i>Materials Science Forum</i> , 2011 , 690, 61	- 64 4	2
76	Properties and processing of magnesium-tin-calcium alloys. <i>Metallic Materials</i> , 2011 , 49, 163-177	1.3	14
75	Investigations on Hot Tearing of Mg-Zn-(Al) Alloys 2011 , 125-130		2
74	Biodegradable Magnesium Implants [How do They Corrode in-Vivo? 2011 , 17-17		
74 73	Biodegradable Magnesium Implants [How do They Corrode in-Vivo? 2011 , 17-17 Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca. <i>SAE International Journal of Materials and Manufacturing</i> , 2010 , 3, 202-210	1	
	Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca. SAE International Journal	0.4	9
73	Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca. <i>SAE International Journal of Materials and Manufacturing</i> , 2010 , 3, 202-210 Effect of Minor Additions of Al and Si on the Mechanical Properties of Cast Mg-3Sn-2Ca Alloys in		9
73 72	Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca. <i>SAE International Journal of Materials and Manufacturing</i> , 2010 , 3, 202-210 Effect of Minor Additions of Al and Si on the Mechanical Properties of Cast Mg-3Sn-2Ca Alloys in Low Temperature Range. <i>Materials Science Forum</i> , 2010 , 654-656, 635-638 High Temperature Deformation Mechanisms and Processing Map for Hot Working of	0.4	
73 72 71	Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca. <i>SAE International Journal of Materials and Manufacturing</i> , 2010 , 3, 202-210 Effect of Minor Additions of Al and Si on the Mechanical Properties of Cast Mg-3Sn-2Ca Alloys in Low Temperature Range. <i>Materials Science Forum</i> , 2010 , 654-656, 635-638 High Temperature Deformation Mechanisms and Processing Map for Hot Working of Cast-Homogenized Mg-3Sn-2Ca Alloy. <i>Materials Science Forum</i> , 2010 , 638-642, 3616-3621 Aluminium-Rich Coring Structures in Mg-Al Alloys with Carbon Inoculation. <i>Materials Science Forum</i> ,	0.4	2
73 72 71 70	Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca. SAE International Journal of Materials and Manufacturing, 2010, 3, 202-210 Effect of Minor Additions of Al and Si on the Mechanical Properties of Cast Mg-3Sn-2Ca Alloys in Low Temperature Range. Materials Science Forum, 2010, 654-656, 635-638 High Temperature Deformation Mechanisms and Processing Map for Hot Working of Cast-Homogenized Mg-3Sn-2Ca Alloy. Materials Science Forum, 2010, 638-642, 3616-3621 Aluminium-Rich Coring Structures in Mg-Al Alloys with Carbon Inoculation. Materials Science Forum, 2010, 654-656, 675-678 Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy.	0.4	2
73 72 71 70 69	Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca. <i>SAE International Journal of Materials and Manufacturing</i> , 2010 , 3, 202-210 Effect of Minor Additions of Al and Si on the Mechanical Properties of Cast Mg-3Sn-2Ca Alloys in Low Temperature Range. <i>Materials Science Forum</i> , 2010 , 654-656, 635-638 High Temperature Deformation Mechanisms and Processing Map for Hot Working of Cast-Homogenized Mg-3Sn-2Ca Alloy. <i>Materials Science Forum</i> , 2010 , 638-642, 3616-3621 Aluminium-Rich Coring Structures in Mg-Al Alloys with Carbon Inoculation. <i>Materials Science Forum</i> , 2010 , 654-656, 675-678 Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy. <i>International Journal of Materials Research</i> , 2010 , 101, 300-306 Status of the Development of Creep Resistant Magnesium Materials for Automotive Applications.	0.4 0.4 0.5	2 1 9

(2008-2010)

65	Simulation of Stresses during Casting of Binary Magnesium-Aluminum Alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2010 , 41, 3196-3207	2.3	24
64	XPS Studies of Magnesium Surfaces after Exposure to Dulbecco's Modified Eagle Medium, Hank's Buffered Salt Solution, and Simulated Body Fluid. <i>Advanced Engineering Materials</i> , 2010 , 12, B699-B704	3.5	65
63	Magnesium alloys as implant materialsprinciples of property design for Mg-RE alloys. <i>Acta Biomaterialia</i> , 2010 , 6, 1714-25	10.8	411
62	Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. <i>Acta Biomaterialia</i> , 2010 , 6, 1813-23	10.8	134
61	Influence of Strontium, Silicon and Calcium Additions on the Properties of the AM50 Alloy. <i>Materials Science Forum</i> , 2009 , 618-619, 459-462	0.4	2
60	Hot tearing behaviour of binary MgIAl alloy using a contraction force measuring method. <i>International Journal of Cast Metals Research</i> , 2009 , 22, 331-334	1	32
59	Quantitative Determination on Hot Tearing in Mg-Al Binary Alloys. <i>Materials Science Forum</i> , 2009 , 618-619, 533-540	0.4	27
58	Numerical Determination of Heat Distribution and Castability Simulations of as Cast MgAl Alloys. <i>Advanced Engineering Materials</i> , 2009 , 11, 162-168	3.5	8
57	Optimum parameters and rate-controlling mechanisms for hot working of extruded MgBSnflCa alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2009 , 502, 25-31	5.3	52
56	Recycling of magnesium drive train components. Science in China Series D: Earth Sciences, 2009, 52, 148-	154	8
55	Investigation of minimum creep rates and stress exponents calculated from tensile and compressive creep data of magnesium alloy AE42. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2009 , 510-511, 382-386	5.3	44
54	Microstructure and corrosion behavior of Mg-Sn-Ca alloys after extrusion. <i>Transactions of Nonferrous Metals Society of China</i> , 2009 , 19, 40-44	3.3	57
53	Three-dimensional microstructural analysis of MgAlØn alloys by synchrotron-radiation-based microtomography. <i>Scripta Materialia</i> , 2008 , 58, 453-456	5.6	18
52	Effects of segregation of primary alloying elements on the creep response in magnesium alloys. <i>Scripta Materialia</i> , 2008 , 58, 894-897	5.6	8
51	Hot working parameters and mechanisms in as-cast MgBSnBCa alloy. <i>Materials Letters</i> , 2008 , 62, 4207-4	299	55
50	Evolution of microstructure and hardness of AE42 alloy after heat treatments. <i>Journal of Alloys and Compounds</i> , 2008 , 463, 238-245	5.7	35
49	Phase equilibria, thermodynamics and solidification microstructures of MgBnfa alloys, Part 2: Prediction of phase formation in Mg-rich MgBnfa cast alloys. <i>Intermetallics</i> , 2008 , 16, 316-321	3.5	61
48	Degradable biomaterials based on magnesium corrosion. <i>Current Opinion in Solid State and Materials Science</i> , 2008 , 12, 63-72	12	1291

47	Influence of Processing Route on the Properties of Magnesium Alloys. <i>Solid State Phenomena</i> , 2008 , 141-143, 43-48	0.4	3
46	Mechanical Properties and Corrosion Performance of AZ-Mg Alloy Modified with Ca and Sr. <i>SAE International Journal of Materials and Manufacturing</i> , 2008 , 1, 103-110	1	3
45	Progress and Challenge for Magnesium Alloys as Biomaterials. <i>Advanced Engineering Materials</i> , 2008 , 10, B3-B14	3.5	479
44	Hot workability characteristics of cast and homogenized MgBSnBCa alloy. <i>Journal of Materials Processing Technology</i> , 2008 , 201, 359-363	5.3	42
43	Effect of Microstructural Inhomogeneity on Creep Response of Mg-Sn Alloys. <i>Key Engineering Materials</i> , 2007 , 345-346, 561-564	0.4	14
42	Effect of Heat Treatment on the Microstructure and Creep Behavior of Mg-Sn-Ca Alloys. <i>Materials Science Forum</i> , 2007 , 546-549, 69-72	0.4	41
41	Biodegradable magnesium-hydroxyapatite metal matrix composites. <i>Biomaterials</i> , 2007 , 28, 2163-74	15.6	482
40	Creep behavior of AE42 based hybrid composites. <i>Materials Science & Description of AE42 based hybrid composites</i> . <i>Materials: Properties, Microstructure and Processing</i> , 2007 , 460-461, 268-276	5.3	28
39	Development of a Magnesium Recycling Alloy Based on AM50. <i>Materials Science Forum</i> , 2007 , 539-543, 108-113	0.4	1
38	High Temperature Deformation Behaviour of a New Magnesium Alloy. <i>Key Engineering Materials</i> , 2007 , 340-341, 89-94	0.4	19
37	Intermetallics in Magnesium Alloys. Advanced Engineering Materials, 2006, 8, 235-240	3.5	180
36	Enhancement of Workability in AZ31 Alloy Processing Maps: Part I, Cast Material. <i>Advanced Engineering Materials</i> , 2006 , 8, 966-973	3.5	23
35	Powder Metallurgically Manufactured Metal Matrix Composites 2006 , 243-276		7
34	Investigations on thermal fatigue of aluminum- and magnesium-alloy based composites. International Journal of Fatigue, 2006 , 28, 1399-1405	5	17
33	Investigations in the Magnesium-Tin System. <i>Materials Science Forum</i> , 2005 , 488-489, 135-138	0.4	38
32	Tensile and compressive creep behaviour of Al2O3 (Saffill) short fiber reinforced magnesium alloy AE42. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2005 , 410-411, 85-88	5.3	35
31	Microstructural investigations of interfaces in short fiber reinforced AlSi12CuMgNi composites. <i>Acta Materialia</i> , 2005 , 53, 3913-3923	8.4	15
30	Analysis of instantaneous thermal expansion coefficient curve during thermal cycling in short fiber reinforced AlSi12CuMgNi composites. <i>Composites Science and Technology</i> , 2005 , 65, 137-147	8.6	21

29	A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys. <i>Advanced Engineering Materials</i> , 2005 , 7, 659-693	3.5	329
28	Microstructural Development in Tension and Compression Creep of Magnesium Alloy AE42. <i>Materials Science Forum</i> , 2005 , 482, 271-274	0.4	3
27	Some studies on the thermal-expansion behavior of C-fiber, SiC p , and In-situ Mg2Si-reinforced AZ31 Mg alloy-based hybrid composites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 1167-1176	2.3	23
26	Micro-Strain Induced by Thermal Cycling in Short Fiber Reinforced AlSi12CuMgNi Piston Alloy and AE42 Magnesium Alloy. <i>Advanced Engineering Materials</i> , 2004 , 6, 883-888	3.5	5
25	Thermal behavior of short fiber reinforced AlSi12CuMgNi piston alloys. <i>Composites Part A: Applied Science and Manufacturing</i> , 2004 , 35, 249-263	8.4	27
24	New Development in Magnesium Technology for Light Weight Structures in Transportation Industries. <i>Materials Science Forum</i> , 2003 , 426-432, 153-160	0.4	18
23	Influence of Heat Treatment on Microstructure of Hot Extruded AZ31. <i>Materials Science Forum</i> , 2003 , 419-422, 297-302	0.4	1
22	Corrosion Behaviour of Magnesium Alloys with RE Additions in Sodium Chloride Solutions. <i>Materials Science Forum</i> , 2003 , 419-422, 867-872	0.4	17
21	Some Studies on Mg Alloy Reinforced with Ceramic Discontinuous Phases. <i>Materials Science Forum</i> , 2003 , 419-422, 837-844	0.4	1
20	Effect of Thermal Treatment on Thermal Expansion Behaviour of Magnesium Alloy Based Hybrid Composites. <i>Materials Science Forum</i> , 2003 , 426-432, 2027-2032	0.4	1
19	Effects of Y Additions on the Microstructures and Mechanical Behaviours of as Cast Mglk YD.5Zr Alloys. <i>Advanced Engineering Materials</i> ,2101033	3.5	O
18	Microstructure and Mechanical Properties of High Pressure Die Cast AM50 Magnesium Alloy Containing Ce149-154		
17	The Effect of Friction Stir Processing on Microstructure and Tensile Behavior of Thixomolded AZ91 Magnesium Alloy391-396		
16	Microstructure and Creep Properties of MEZ Magnesium Alloy Processed by Thixocasting383-389		
15	High Temperature Deformation of Magnesium Alloy TX32-0.4Al-0.8Si41-45		
14	Magnesium and Magnesium Alloys113-150		2
13	Microstructural and Mechanical Aspects of Reinforcement Welds for Lightweight Components Produced by Friction Hydro Pillar Processing499-504		
12	Elevated Temperature and Varied Load Response of AS41 at Bolted Joint511-516		

11	In Situ Synchrotron Radiation Diffraction during Solidification of Mg4Y and Mg4YxGd Alloys ($x = 1, 4 \text{ wt.}\%$)	213-218
10	Coating Systems for Biodegradable Magnesium Applications371-374	
9	Spike-Forging of As-Cast TX32 Magnesium Alloy273-279	
8	Low Cycle Fatigue Properties of Extruded Mg10GdxNd Alloys115-120	
7	Nano-Indentation Studies of Twinned Magnesium Single Crystals117-119	1
6	Solidification Studies of Mg-Al Binary Alloys175-178	1
5	Mechanical and Corrosion Properties of As-Cast and Extruded MG1OGD Alloy for Biomedical Application2	53-259
4	Texture Evolution during Hot Deformation Processing of Mg-3Sn-2Ca-0.4Al Alloy295-300	1
3	Crack Propagation under Bending in Cast Mg10GdxNd-T4 Alloys77-82	2
2	In Situ Synchrotron Radiation Diffraction during Melting and Solidification of Mg-Al Alloys Containing CaO191-195	1
1	Texture Evolution during Wire Drawing of Mg-RE Alloy251-256	2