Zhihong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5571423/publications.pdf Version: 2024-02-01

<u> 7ниномс Ги</u>

#	Article	IF	CITATIONS
1	Study on a new manner of the magnetization switching actuated by a unidirectional pulse current. Nanotechnology, 2022, 33, 025001.	2.6	1
2	Domain wall motion driven by a wide range of current in coupled soft/hard ferromagnetic nanowires. Nanoscale Advances, 2022, 4, 1545-1550.	4.6	2
3	Motion of skyrmioniums with negligible deformation in synthetic antiferromagnets. Applied Physics Letters, 2022, 121, .	3.3	3
4	Transported properties and low-temperature magnetic behaviors of Ti x Cr1â^' x O2 films. Journal Physics D: Applied Physics, 2021, 54, 135004.	2.8	3
5	Two oscillation states in free/hard bilayered nano-pillars. Applied Physics Letters, 2021, 118, 182401.	3.3	0
6	Manipulation of precession modes in all-permalloy nanostripe-nanopillar structured spin torque nano-oscillator driven by direct current. Nanotechnology, 2021, 33, .	2.6	0
7	The large perpendicular magnetic anisotropy induced at the Co ₂ FeAl/MgAl ₂ O ₄ interface and tuned with the strain, voltage and charge doping by first principles study. Nanotechnology, 2021, 32, 495702.	2.6	6
8	Spin hall nano-oscillators based on two-dimensional Fe ₃ GeTe ₂ magnetic materials. Nanoscale, 2020, 12, 22808-22816.	5.6	7
9	Ultralow Gilbert damping in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CrO</mml:mi><m epitaxial films. Physical Review B, 2020, 102, .</m </mml:msub></mml:mrow></mml:math 	ml:m 8<i>,2</i>2 <td>nmlæmn> </td>	nmlæmn>
10	A numerical study of spin torque oscillators based on IMA/PMA bilayer nano-pillars. Nanotechnology, 2020, 31, 345709.	2.6	5
11	Lateral domain wall oscillations in IMA/PMA bilayered nano-strips driven by a perpendicular current: A type of domain wall based oscillators. Applied Physics Letters, 2020, 116, .	3.3	4
12	Voltage-controlled skyrmion-based nanodevices for neuromorphic computing using a synthetic antiferromagnet. Nanoscale Advances, 2020, 2, 1309-1317.	4.6	25
13	Regulating a novel domain wall oscillator with a steady frequency by changing the current density. Nanotechnology, 2020, 31, 235201.	2.6	4
14	Thermochromic, threshold switching, and optical properties of Cr-doped VO2 thin films. Journal of Alloys and Compounds, 2019, 806, 310-315.	5.5	24
15	Current driven spin oscillation in PMA/IMA composite nanowires—a novel spin torque based nano-oscillators. Nanotechnology, 2019, 30, 21LT01.	2.6	6
16	Exchange bias and the effect of phase competition in FePt3 single layer and bilayer films. Journal of Alloys and Compounds, 2019, 786, 848-854.	5.5	1
17	Magnetic properties and thermal stability of N-doped CrO2 (100) films. Ceramics International, 2018, 44, 9664-9670.	4.8	5
18	Dynamics of vortex domain walls in ferromagnetic nanowires – A possible method for chirality manipulation. Journal of Magnetism and Magnetic Materials, 2018, 456, 341-345.	2.3	10

ZHIHONG LU

#	Article	IF	CITATIONS
19	Domain-wall motion at an ultrahigh speed driven by spin–orbit torque in synthetic antiferromagnets. Nanotechnology, 2018, 29, 175404.	2.6	11
20	Manipulation of film quality and magnetic properties of CrO2 (100) films on TiO2 substrates with carrier gas and growth temperature. RSC Advances, 2018, 8, 1562-1568.	3.6	4
21	Magnetic properties and thermal stability of Ti-doped CrO2 films. Journal of Magnetism and Magnetic Materials, 2018, 451, 572-576.	2.3	8
22	Intrinsic oscillation of coupled domain walls in a perpendicularly magnetized nanowire system. Journal of Applied Physics, 2016, 119, 233901.	2.5	4
23	Half metallicity and magnetic properties of CrO2 doped with Ti, Sn or Ru. Journal of Magnetism and Magnetic Materials, 2016, 417, 80-86.	2.3	10
24	Improving thermostability of CrO2 thin films by doping with Sn. Applied Physics Letters, 2014, 105, .	3.3	19
25	Artificially modulated chemical order in thin films: A different approach to create ferro/antiferromagnetic interfaces. Physical Review B, 2010, 82, .	3.2	17
26	Structural and magnetic properties of epitaxial Fe25Pt75. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 770-775.	2.1	12