Zhihong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5571423/publications.pdf Version: 2024-02-01

<u> 7ниномс Ги</u>

#	Article	IF	CITATIONS
1	Voltage-controlled skyrmion-based nanodevices for neuromorphic computing using a synthetic antiferromagnet. Nanoscale Advances, 2020, 2, 1309-1317.	4.6	25
2	Thermochromic, threshold switching, and optical properties of Cr-doped VO2 thin films. Journal of Alloys and Compounds, 2019, 806, 310-315.	5.5	24
3	Improving thermostability of CrO2 thin films by doping with Sn. Applied Physics Letters, 2014, 105, .	3.3	19
4	Artificially modulated chemical order in thin films: A different approach to create ferro/antiferromagnetic interfaces. Physical Review B, 2010, 82, .	3.2	17
5	Structural and magnetic properties of epitaxial Fe25Pt75. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 770-775.	2.1	12
6	Domain-wall motion at an ultrahigh speed driven by spin–orbit torque in synthetic antiferromagnets. Nanotechnology, 2018, 29, 175404.	2.6	11
7	Half metallicity and magnetic properties of CrO2 doped with Ti, Sn or Ru. Journal of Magnetism and Magnetic Materials, 2016, 417, 80-86.	2.3	10
8	Dynamics of vortex domain walls in ferromagnetic nanowires – A possible method for chirality manipulation. Journal of Magnetism and Magnetic Materials, 2018, 456, 341-345.	2.3	10
9	Magnetic properties and thermal stability of Ti-doped CrO2 films. Journal of Magnetism and Magnetic Materials, 2018, 451, 572-576.	2.3	8
10	Ultralow Gilbert damping in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CrO</mml:mi><mn epitaxial films. Physical Review B, 2020, 102, .</mn </mml:msub></mml:mrow></mml:math 	nl:m a. 22 <td>nmlømn></td>	nmlømn>
11	Spin hall nano-oscillators based on two-dimensional Fe ₃ GeTe ₂ magnetic materials. Nanoscale, 2020, 12, 22808-22816.	5.6	7
12	Current driven spin oscillation in PMA/IMA composite nanowires—a novel spin torque based nano-oscillators. Nanotechnology, 2019, 30, 21LT01.	2.6	6
13	The large perpendicular magnetic anisotropy induced at the Co ₂ FeAl/MgAl ₂ O ₄ interface and tuned with the strain, voltage and charge doping by first principles study. Nanotechnology, 2021, 32, 495702.	2.6	6
14	Magnetic properties and thermal stability of N-doped CrO2 (100) films. Ceramics International, 2018, 44, 9664-9670.	4.8	5
15	A numerical study of spin torque oscillators based on IMA/PMA bilayer nano-pillars. Nanotechnology, 2020, 31, 345709.	2.6	5
16	Intrinsic oscillation of coupled domain walls in a perpendicularly magnetized nanowire system. Journal of Applied Physics, 2016, 119, 233901.	2.5	4
17	Manipulation of film quality and magnetic properties of CrO2 (100) films on TiO2 substrates with carrier gas and growth temperature. RSC Advances, 2018, 8, 1562-1568.	3.6	4
18	Lateral domain wall oscillations in IMA/PMA bilayered nano-strips driven by a perpendicular current: A type of domain wall based oscillators. Applied Physics Letters, 2020, 116, .	3.3	4

Zhihong Lu

#	Article	IF	CITATIONS
19	Regulating a novel domain wall oscillator with a steady frequency by changing the current density. Nanotechnology, 2020, 31, 235201.	2.6	4
20	Transported properties and low-temperature magnetic behaviors of Ti x Cr1â^' x O2 films. Journal Physics D: Applied Physics, 2021, 54, 135004.	2.8	3
21	Motion of skyrmioniums with negligible deformation in synthetic antiferromagnets. Applied Physics Letters, 2022, 121, .	3.3	3
22	Domain wall motion driven by a wide range of current in coupled soft/hard ferromagnetic nanowires. Nanoscale Advances, 2022, 4, 1545-1550.	4.6	2
23	Exchange bias and the effect of phase competition in FePt3 single layer and bilayer films. Journal of Alloys and Compounds, 2019, 786, 848-854.	5.5	1
24	Study on a new manner of the magnetization switching actuated by a unidirectional pulse current. Nanotechnology, 2022, 33, 025001.	2.6	1
25	Two oscillation states in free/hard bilayered nano-pillars. Applied Physics Letters, 2021, 118, 182401.	3.3	0
26	Manipulation of precession modes in all-permalloy nanostripe-nanopillar structured spin torque nano-oscillator driven by direct current. Nanotechnology, 2021, 33, .	2.6	0