Yaou Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5571340/publications.pdf

Version: 2024-02-01

236612 223531 2,621 94 25 46 citations h-index g-index papers 99 99 99 3620 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diffusion Tensor Tractography Reveals Disrupted Topological Efficiency in White Matter Structural Networks in Multiple Sclerosis. Cerebral Cortex, 2011, 21, 2565-2577.	1.6	297
2	Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage, 2019, 184, 901-915.	2.1	163
3	Brain Ischemia Suppresses Immunity in the Periphery and Brain via Different Neurogenic Innervations. Immunity, 2017, 46, 474-487.	6.6	139
4	Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain, 2019, 142, 633-646.	3.7	75
5	Microstructural abnormalities in the trigeminal nerves of patients with trigeminal neuralgia revealed by multiple diffusion metrics. European Journal of Radiology, 2013, 82, 783-786.	1.2	74
6	Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: A voxel-based morphometry study. European Journal of Radiology, 2012, 81, e110-e114.	1.2	73
7	Brain MRI Characteristics of Patients with Anti- <i>N</i> -Methyl-D-Aspartate Receptor Encephalitis and Their Associations with 2-Year Clinical Outcome. American Journal of Neuroradiology, 2018, 39, 824-829.	1.2	73
8	Differential patterns of spinal cord and brain atrophy in NMO and MS. Neurology, 2015, 84, 1465-1472.	1.5	70
9	Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Scientific Reports, 2016, 6, 29383.	1.6	65
10	Generic acquisition protocol for quantitative MRI of the spinal cord. Nature Protocols, 2021, 16, 4611-4632.	5.5	65
11	A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations. Multiple Sclerosis Journal, 2012, 18, 1013-1021.	1.4	63
12	Structural MRI substrates of cognitive impairment in neuromyelitis optica. Neurology, 2015, 85, 1491-1499.	1.5	63
13	MRI criteria differentiating asymptomatic PML from new MS lesions during natalizumab pharmacovigilance. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1138-1145.	0.9	59
14	Functional Brain Network Alterations in Clinically Isolated Syndrome and Multiple Sclerosis: A Graph-based Connectome Study. Radiology, 2017, 282, 534-541.	3.6	58
15	Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study. European Journal of Radiology, 2011, 80, 407-411.	1.2	56
16	Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: A TBSS study. European Journal of Radiology, 2012, 81, 2826-2832.	1.2	49
17	Autoantibody to MOG suggests two distinct clinical subtypes of NMOSD. Science China Life Sciences, 2016, 59, 1270-1281.	2.3	47
18	Brain plasticity in relapsing–remitting multiple sclerosis: Evidence from resting-state fMRI. Journal of the Neurological Sciences, 2011, 304, 127-131.	0.3	46

#	Article	IF	CITATIONS
19	Prevention and control measures in radiology department for COVID-19. European Radiology, 2020, 30, 3603-3608.	2.3	39
20	Altered Topological Organization of White Matter Structural Networks in Patients with Neuromyelitis Optica. PLoS ONE, 2012, 7, e48846.	1.1	37
21	Bidirectional degeneration in the visual pathway in neuromyelitis optica spectrum disorder (NMOSD). Multiple Sclerosis Journal, 2018, 24, 1585-1593.	1.4	36
22	Multimodal Quantitative MR Imaging of the Thalamus in Multiple Sclerosis and Neuromyelitis Optica. Radiology, 2015, 277, 784-792.	3.6	35
23	Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica. European Radiology, 2014, 24, 2334-2343.	2.3	34
24	Progressive brain rich-club network disruption from clinically isolated syndrome towards multiple sclerosis. NeuroImage: Clinical, 2018, 19, 232-239.	1.4	33
25	Multicenter Validation of Mean Upper Cervical Cord Area Measurements from Head 3D T1-Weighted MR Imaging in Patients with Multiple Sclerosis. American Journal of Neuroradiology, 2016, 37, 749-754.	1.2	30
26	Altered Temporal Organization of Brief Spontaneous Brain Activities in Patients with Alzheimer's Disease. Neuroscience, 2020, 425, 1-11.	1.1	30
27	Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. Neurolmage, 2017, 163, 106-114.	2.1	27
28	Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Scientific Data, 2021, 8, 219.	2.4	27
29	Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder. European Radiology, 2019, 29, 4670-4677.	2.3	25
30	Prediction of H3K27M-mutant brainstem glioma by amide proton transfer–weighted imaging and its derived radiomics. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4426-4436.	3.3	25
31	Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography. BioMed Research International, 2015, 2015, 1-11.	0.9	24
32	Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS. European Radiology, 2018, 28, 96-103.	2.3	24
33	Brain structural alterations in MOG antibody diseases: a comparative study with AQP4 seropositive NMOSD and MS. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 709-716.	0.9	24
34	Altered thalamic functional connectivity in multiple sclerosis. European Journal of Radiology, 2015, 84, 703-708.	1.2	23
35	Different patterns of cerebral perfusion in SLE patients with and without neuropsychiatric manifestations. Human Brain Mapping, 2020, 41, 755-766.	1.9	23
36	Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning. NeuroImage: Clinical, 2021, 31, 102766.	1.4	23

#	Article	IF	CITATIONS
37	Assisting scalable diagnosis automatically via CT images in the combat against COVID-19. Scientific Reports, 2021, 11, 4145.	1.6	23
38	Deep learning–based methods may minimize GBCA dosage in brain MRI. European Radiology, 2021, 31, 6419-6428.	2.3	23
39	Disrupted Module Efficiency of Structural and Functional Brain Connectomes in Clinically Isolated Syndrome and Multiple Sclerosis. Frontiers in Human Neuroscience, 2018, 12, 138.	1.0	22
40	Diagnostic performance of brain MRI in pharmacovigilance of natalizumab-treated MS patients. Multiple Sclerosis Journal, 2016, 22, 1174-1183.	1.4	21
41	White matter microstructural alterations in clinically isolated syndrome and multiple sclerosis. Journal of Clinical Neuroscience, 2018, 53, 27-33.	0.8	19
42	White matter atrophy in brain of neuromyelitis optica: a voxel-based morphometry study. Acta Radiologica, 2014, 55, 589-593.	0.5	17
43	Whole brain functional connectivity in clinically isolated syndrome without conventional brain MRI lesions. European Radiology, 2016, 26, 2982-2991.	2.3	17
44	Clinical isolated syndrome: A 3-year follow-up study in China. Clinical Neurology and Neurosurgery, 2011, 113, 658-660.	0.6	16
45	Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI. Acta Radiologica, 2012, 53, 1073-1078.	0.5	15
46	Multimodal characterization of gray matter alterations in neuromyelitis optica. Multiple Sclerosis Journal, 2018, 24, 1308-1316.	1.4	15
47	The effects of repetitive transcranial magnetic stimulation on the whole-brain functional network of postherpetic neuralgia patients. Medicine (United States), 2019, 98, e16105.	0.4	15
48	Identifying Mild Cognitive Impairment with Random Forest by Integrating Multiple MRI Morphological Metrics. Journal of Alzheimer's Disease, 2020, 73, 991-1002.	1.2	15
49	Acceleration of Brain TOF-MRA with Compressed Sensitivity Encoding: A Multicenter Clinical Study. American Journal of Neuroradiology, 2021, 42, 1208-1215.	1.2	15
50	Comparison of brain and spinal cord magnetic resonance imaging features in neuromyelitis optica spectrum disorders patients with or without aquaporin-4 antibody. Multiple Sclerosis and Related Disorders, 2017, 13, 58-66.	0.9	14
51	Metabolic changes in normal-appearing white matter in patients with neuromyelitis optica and multiple sclerosis: a comparative magnetic resonance spectroscopy study. Acta Radiologica, 2017, 58, 1132-1137.	0.5	14
52	Accelerating Brain 3D T1-Weighted Turbo Field Echo MRI Using Compressed Sensing-Sensitivity Encoding (CS-SENSE). European Journal of Radiology, 2020, 131, 109255.	1.2	14
53	Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort. Journal of Neurology, 2020, 267, 3541-3554.	1.8	14
54	Brain MRI characteristics in neuromyelitis optica spectrum disorders: A large multi-center retrospective study in China. Multiple Sclerosis and Related Disorders, 2020, 46, 102475.	0.9	13

#	Article	IF	CITATIONS
55	A scaling aneurysm model-based approach to assessing the role of flow pattern and energy loss in aneurysm rupture prediction. Journal of Translational Medicine, 2015, 13, 311.	1.8	12
56	White Matter Microstructure Alterations in Patients With Spinal Cord Injury Assessed by Diffusion Tensor Imaging. Frontiers in Human Neuroscience, 2019, 13, 11.	1.0	12
57	Primary Categorizing and Masking Cerebral Small Vessel Disease Based on "Deep Learning System― Frontiers in Neuroinformatics, 2020, 14, 17.	1.3	12
58	The occurrence of myelin oligodendrocyte glycoprotein antibodies in aquaporin-4-antibody seronegative Neuromyelitis Optica Spectrum Disorder: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders, 2021, 53, 103030.	0.9	12
59	Radiomics Nomogram for Predicting Stroke Recurrence in Symptomatic Intracranial Atherosclerotic Stenosis. Frontiers in Neuroscience, 2022, 16, 851353.	1.4	12
60	A transfer learning approach to few-shot segmentation of novel white matter tracts. Medical Image Analysis, 2022, 79, 102454.	7.0	12
61	Blocking LINGO-1 in vivo reduces degeneration and enhances regeneration of the optic nerve. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2016, 2, 205521731664170.	0.5	11
62	Brain structural and functional alterations in MOG antibody disease. Multiple Sclerosis Journal, 2021, 27, 1350-1363.	1.4	11
63	Identifying aMCI with functional connectivity network characteristics based on subtle AAL atlas. Brain Research, 2018, 1696, 81-90.	1.1	10
64	Syphilitic meningomyelitis misdiagnosed as spinal cord tumor: Case and review. Journal of Spinal Cord Medicine, 2021, 44, 789-793.	0.7	10
65	Multimodal super-resolved q-space deep learning. Medical Image Analysis, 2021, 71, 102085.	7.0	10
66	Aberrant multimodal brain networks in patients with antiâ€NMDA receptor encephalitis. CNS Neuroscience and Therapeutics, 2021, 27, 652-663.	1.9	9
67	A deep learning algorithm for white matter hyperintensity lesion detection and segmentation. Neuroradiology, 2022, 64, 727-734.	1.1	9
68	Volumetric segmentation of white matter tracts with label embedding. NeuroImage, 2022, 250, 118934.	2.1	9
69	Structural and functional hippocampal alterations in Multiple sclerosis and neuromyelitis optica spectrum disorder. Multiple Sclerosis Journal, 2022, 28, 707-717.	1.4	8
70	Altered Brain Structure and Functional Connectivity of Primary Visual Cortex in Optic Neuritis. Frontiers in Human Neuroscience, 2018, 12, 473.	1.0	7
71	Hemodynamic simulation of intracranial aneurysm growth with virtual silk stent implantation. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 558-567.	0.9	7
72	Cortical Thinning and Ventricle Enlargement in Neuromyelitis Optica Spectrum Disorders. Frontiers in Neurology, 2020, 11, 872.	1.1	7

#	Article	IF	Citations
73	Subtyping relapsing–remitting multiple sclerosis using structural MRI. Journal of Neurology, 2021, 268, 1808-1817.	1.8	7
74	Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder. , 2016, 7, 691.		6
75	Persistently Gadolinium-Enhancing Lesion Is a Predictor of Poor Prognosis in NMOSD Attack: a Clinical Trial. Neurotherapeutics, 2021, 18, 868-877.	2.1	6
76	Deep Brain Stimulation Modulates Multiple Abnormal Resting-State Network Connectivity in Patients With Parkinson's Disease. Frontiers in Aging Neuroscience, 2022, 14, 794987.	1.7	6
77	Relationship between homocysteine levels and post-stroke cognitive impairment in female and male population: from a prospective multicenter study. Journal of Translational Internal Medicine, 2021, 9, 264-272.	1.0	6
78	An approach to facial expression recognition integrating radial basis function kernel and multidimensional scaling analysis. Soft Computing, 2014, 18, 1363-1371.	2.1	5
79	Structural and Functional Alterations in Visual Pathway After Optic Neuritis in MOG Antibody Disease: A Comparative Study With AQP4 Seropositive NMOSD. Frontiers in Neurology, 2021, 12, 673472.	1.1	5
80	Cerebral Microbleed Automatic Detection System Based on the "Deep Learning― Frontiers in Medicine, 2022, 9, 807443.	1,2	5
81	Abnormal brain function in neuromyelitis optica: A fMRI investigation of mPASAT. European Journal of Radiology, 2017, 95, 197-201.	1.2	4
82	Altered Cerebral Blood Flow in Alzheimer's Disease With Depression. Frontiers in Psychiatry, 2021, 12, 687739.	1.3	4
83	Longitudinal progression of grey matter atrophy morphological characteristics in MCI patients. , 2013, , .		3
84	Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references. NeuroImage: Clinical, 2021, 30, 102659.	1.4	3
85	Prediction of H3 K27M-mutant in midline gliomas by magnetic resonance imaging: a systematic review and meta-analysis. Neuroradiology, 2022, 64, 1311-1319.	1.1	3
86	Probing individual-level structural atrophy in frontal glioma patients. Neurosurgical Review, 2022, 45, 2845-2855.	1,2	3
87	Baseline Brain Activity Changes in Patients With Single and Relapsing Optic Neuritis. Frontiers in Human Neuroscience, 2018, 12, 144.	1.0	2
88	Fetal Familial Cerebral Cavernous Malformation With a Novel Heterozygous KRIT1 Pathogenic Variant. Neurology, 2021, 97, 10.1212/WNL.00000000012852.	1.5	2
89	Radiomic signatures based on multiparametric MR images for predicting Ki-67 index expression in medulloblastoma. Annals of Translational Medicine, 2021, 9, 1665-1665.	0.7	2
90	Anti-Aquaporin-4 Antibody Positivity in Neuromyelitis Optica Is Associated with Lesion Activity. European Neurology, 2013, 70, 113-116.	0.6	1

Yaou Liu

#	Article	IF	CITATION
91	<i>Reply:</i> . American Journal of Neuroradiology, 2018, 39, E121-E122.	1.2	1
92	Acceleration of Brain Susceptibility-Weighted Imaging with Compressed Sensitivity Encoding: A Prospective Multicenter Study. American Journal of Neuroradiology, 2022, 43, 402-409.	1.2	1
93	Structural and Functional Characterization of Gray Matter Alterations in Female Patients With Neuropsychiatric Systemic Lupus. Frontiers in Neuroscience, 2022, 16, 839194.	1.4	1
94	Assessment of blood supply of the external carotid artery in moyamoya disease using super-selective pseudo-continuous arterial spin labeling technique. European Radiology, 2021, 31, 9287-9295.	2.3	0