Régine Perzynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5570730/publications.pdf Version: 2024-02-01

PÃOCINE PERZVISKI

#	Article	IF	CITATIONS
1	lonic ferrofluids: A crossing of chemistry and physics. Journal of Magnetism and Magnetic Materials, 1990, 85, 27-32.	1.0	220
2	Structural analogy between aqueous and oily magnetic fluids. Journal of Chemical Physics, 1999, 111, 7147-7160.	1.2	139
3	Magnetization temperature dependence and freezing of surface spins in magnetic fluids based on ferrite nanoparticles. Physical Review B, 2005, 72, .	1.1	128
4	Synthesis of Coreâ^'Shell Ferrite Nanoparticles for Ferrofluids:  Chemical and Magnetic Analysis. Journal of Physical Chemistry C, 2008, 112, 6220-6227.	1.5	125
5	Static magneto-optical birefringence of size-sorted nanoparticles. European Physical Journal B, 1998, 5, 859-867.	0.6	107
6	Behavior of a magnetic fluid microdrop in a rotating magnetic field. Physical Review Letters, 1994, 72, 2705-2708.	2.9	98
7	Electrostatic Coâ€Assembly of Iron Oxide Nanoparticles and Polymers: Towards the Generation of Highly Persistent Superparamagnetic Nanorods. Advanced Materials, 2008, 20, 3877-3881.	11.1	97
8	Anisotropy of the structure factor of magnetic fluids under a field probed by small-angle neutron scattering. Physical Review E, 2002, 65, 031403.	0.8	84
9	Transient grating in a ferrofluid under magnetic field: Effect of magnetic interactions on the diffusion coefficient of translation. Physical Review E, 1995, 52, 3936-3942.	0.8	77
10	Liquidâ^'Gas Transitions in Charged Colloidal Dispersions:Â Small-Angle Neutron Scattering Coupled with Phase Diagrams of Magnetic Fluids. Langmuir, 2000, 16, 5617-5625.	1.6	77
11	Forced Rayleigh Experiment in a Magnetic Fluid. Physical Review Letters, 1995, 74, 5032-5035.	2.9	72
12	Core/Shell Nanoparticles of Non-Stoichiometric Zn–Mn and Zn–Co Ferrites as Thermosensitive Heat Sources for Magnetic Fluid Hyperthermia. Journal of Physical Chemistry C, 2018, 122, 3028-3038.	1.5	68
13	Glassy dynamics and aging in a dense ferrofluid. Europhysics Letters, 2006, 75, 764-770.	0.7	63
14	Assembly of microscopic highly magnetic droplets: Magnetic alignment versus viscous drag. Physical Review E, 1999, 59, 1736-1746.	0.8	57
15	Can charged colloidal particles increase the thermoelectric energy conversion efficiency?. Physical Chemistry Chemical Physics, 2017, 19, 9409-9416.	1.3	47
16	What Tunes the Structural Anisotropy of Magnetic Fluids under a Magnetic Field?. Journal of Physical Chemistry B, 2006, 110, 4378-4386.	1.2	45
17	Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids: magnetic and hydrodynamic interactions. Journal of Physics Condensed Matter, 2003, 15, S1305-S1334.	0.7	44
18	Dynamics of paramagnetic nanostructured rods under rotating field. Journal of Magnetism and Magnetic Materials, 2011, 323, 1309-1313.	1.0	44

Régine Perzynski

#	Article	IF	CITATIONS
19	Thermoelectricity and thermodiffusion in charged colloids. Journal of Chemical Physics, 2015, 143, 054902.	1.2	41
20	Experimental investigation of superspin glass dynamics. Journal of Applied Physics, 2005, 97, 10A502.	1.1	38
21	Local Structure of Core–Shell MnFe ₂ O _{4+δ} -Based Nanocrystals: Cation Distribution and Valence States of Manganese Ions. Journal of Physical Chemistry C, 2017, 121, 8982-8991.	1.5	36
22	pH Effect on an Ionic Ferrofluid: Evidence of a Thixotropic Magnetic Phase. Journal of Physical Chemistry B, 1999, 103, 6421-6428.	1.2	35
23	Magnetic particle mixing with magnetic micro-convection for microfluidics. Journal of Magnetism and Magnetic Materials, 2015, 380, 227-230.	1.0	35
24	Ferrofluid viscometer. Journal De Physique (Paris), Lettres, 1985, 46, 1199-1205.	2.8	34
25	Small-angle neutron scattering analysis of a water-based magnetic fluid with charge stabilization: contrast variation and scattering of polarized neutrons. Journal of Applied Crystallography, 2009, 42, 1009-1019.	1.9	33
26	Rotational arrest in a repulsive colloidal glass. Journal of Physics Condensed Matter, 2006, 18, 10119-10132.	0.7	23
27	Colloidal dispersions of oxide nanoparticles in ionic liquids: elucidating the key parameters. Nanoscale Advances, 2020, 2, 1560-1572.	2.2	23
28	Thermodiffusion of repulsive charged nanoparticles – the interplay between single-particle and thermoelectric contributions. Physical Chemistry Chemical Physics, 2018, 20, 16402-16413.	1.3	22
29	Understanding the structure and the dynamics of magnetic fluids: coupling of experiment and simulation. Journal of Physics Condensed Matter, 2006, 18, S2685-S2696.	0.7	21
30	Local structure of polymeric ferrogels. Journal of Magnetism and Magnetic Materials, 2011, 323, 1211-1215.	1.0	21
31	Thermoelectricity and Thermodiffusion in Magnetic Nanofluids: Entropic Analysis. Entropy, 2018, 20, 405.	1.1	21
32	Title is missing!. Magnetohydrodynamics, 2000, 36, 300-311.	0.5	20
33	Tuning the Solid/Liquid Interface in Ionic Colloidal Dispersions: Influence on Their Structure and Thermodiffusive Properties. Journal of Physical Chemistry C, 2017, 121, 5539-5550.	1.5	19
34	Magnetic micro-droplet in rotating field: numerical simulation and comparison withÂexperiment. Journal of Fluid Mechanics, 2017, 821, 266-295.	1.4	17
35	Probing heterogeneous dynamics of a repulsive colloidal glass by time resolved x-ray correlation spectroscopy. Journal of Physics Condensed Matter, 2008, 20, 155104.	0.7	16
36	The cage elasticity and under-field structure of concentrated magnetic colloids probed by small angle X-ray scattering. Soft Matter, 2013, 9, 11480.	1.2	16

Régine Perzynski

#	Article	IF	CITATIONS
37	Magnetic field driven micro-convection in the Hele-Shaw cell: the Brinkman model and its comparison with experiment. Journal of Fluid Mechanics, 2015, 774, 170-191.	1.4	14
38	Investigation of water-based and oil-based ferrofluids with a new magnetorheological cell: effect of the microstructure. Rheologica Acta, 2016, 55, 67-81.	1.1	14
39	Concentrated assemblies of magnetic nanoparticles in ionic liquids. Faraday Discussions, 2015, 181, 193-209.	1.6	13
40	lonic magnetic fluids in polar solvents with tuned counter-ions. Journal of Magnetism and Magnetic Materials, 2017, 431, 2-7.	1.0	13
41	Magnetically enhancing the Seebeck coefficient in ferrofluids. Nanoscale Advances, 2019, 1, 2979-2989.	2.2	13
42	Structural, Thermodiffusive and Thermoelectric Properties of Maghemite Nanoparticles Dispersed in Ethylammonium Nitrate. ChemEngineering, 2020, 4, 5.	1.0	13
43	Experimental Determination of the Soret Coefficient of Ionic Ferrofluids: Influence of the Volume Fraction and Ionic Strength. Journal of Non-Equilibrium Thermodynamics, 2007, 32, .	2.4	11
44	Rotational dynamics and aging in a magnetic colloidal glass. Physical Review E, 2009, 80, 041504.	0.8	11
45	Relaxation of the field-induced structural anisotropy in a rotating magnetic fluid. Europhysics Letters, 2009, 86, 10005.	0.7	11
46	Thermodiffusion of citrate-coated γ-Fe ₂ O ₃ nanoparticles in aqueous dispersions with tuned counter-ions – anisotropy of the Soret coefficient under a magnetic field. Physical Chemistry Chemical Physics, 2019, 21, 1895-1903.	1.3	11
47	Design of concentrated colloidal dispersions of iron oxide nanoparticles in ionic liquids: Structure and thermal stability from 25 to 200°C. Journal of Colloid and Interface Science, 2022, 607, 584-594.	5.0	11
48	Spontaneous order in ensembles of rotating magnetic droplets. Journal of Magnetism and Magnetic Materials, 2020, 500, 166304.	1.0	10
49	Reorientation kinetics of superparamagnetic nanostructured rods. Journal of Physics Condensed Matter, 2008, 20, 494216.	0.7	9
50	Inversion of thermodiffusive properties of ionic colloidal dispersions in water-DMSO mixtures probed by forced Rayleigh scattering. European Physical Journal E, 2019, 42, 72.	0.7	9
51	Structural probing of clusters and gels of self-aggregated magnetic nanoparticles. Magnetohydrodynamics, 2013, 49, 328-338.	0.5	8
52	Microstructure of colloidal dispersions in the ionic liquid ethylammonium nitrate: influence of the nanoparticles' counterion. Journal of Physics Condensed Matter, 2014, 26, 284113.	0.7	7
53	Thermodiffusion anisotropy under a magnetic field in ionic liquid-based ferrofluids. Soft Matter, 2021, 17, 4566-4577.	1.2	5
54	Magneto-orientational properties of ionically stabilized aqueous dispersions of Ni(OH)2 nanoplatelets. European Physical Journal E, 2008, 26, 355-360.	0.7	3

#	Article	IF	CITATIONS
55	Dispersions of magnetic nanoparticles in the mixture ethyleneglycol-choline chloride: The role of solvent association. Journal of Molecular Liquids, 2018, 268, 545-552.	2.3	3
56	Small deformation theory for a magnetic droplet in a rotating field. Physics of Fluids, 0, , .	1.6	3
57	Effect of an excess of surfactant on thermophoresis, mass diffusion and viscosity in an oily surfactant-stabilized ferrofluid. European Physical Journal E, 2022, 45, 43.	0.7	1