Stefan Schulz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5570616/publications.pdf

Version: 2024-02-01

2258059 2053705 14 41 3 5 citations h-index g-index papers 16 16 16 21 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	High-Precision Absolute Pose Sensing for Parallel Mechanisms. Sensors, 2022, 22, 1995.	3.8	3
2	Passive Rotation of Rotational Joints and Its Computation Method. Mechanisms and Machine Science, 2019, , 357-366.	0.5	2
3	Performance Evaluation of a Sensor Concept for Solving the Direct Kinematics Problem of General Planar 3-RPR Parallel Mechanisms by Using Solely the Linear Actuators' Orientations. Robotics, 2019, 8, 72.	3. 5	3
4	On Using Inertial Measurement Units for Solving the Direct Kinematics Problem of Parallel Mechanisms. Robotics, 2019, 8, 99.	3.5	1
5	On the origin of passive rotation in rotational joints, and how to calculate it. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900298.	0.2	1
6	Comparison of Three Methods of Length Compensation in a Parallel Kinematic and Their Equivalence Conditions. MATEC Web of Conferences, 2018, 198, 02003.	0.2	2
7	Performance of an IMU-Based Sensor Concept for Solving the Direct Kinematics Problem of the Stewart-Gough Platform. , 2018, , .		3
8	Closed-form Solution for the Direct Kinematics Problem of the Planar 3-RPR Parallel Mechanism. , 2018, , .		4
9	On the Direct Kinematics Problem of Parallel Mechanisms. Journal of Robotics, 2018, 2018, 1-9.	0.9	6
10	Structural Synthesis of Parallel Robots with Unguided Linear Actuators. Proceedings in Applied Mathematics and Mechanics, 2017, 17, 169-170.	0.2	0
11	Sensor concept for solving the direct kinematics problem of the Stewart-Gough platform. , 2017, , .		8
12	Robot system for the sustainable mobility assurance in the assistance and care. , 2016, , .		1
13	Passive Rotation Compensation in Parallel Kinematics Using Quaternions. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 51-52.	0.2	3
14	New Prototype of the Two-Legged Robot CENTAUROB. , 2015, , .		2