Bingfu Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5570442/publications.pdf

Version: 2024-02-01

23500 39575 11,601 236 58 94 citations h-index g-index papers 239 239 239 9051 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Selfâ€Quenchingâ€Resistant Carbonâ€Dot Powder with Tunable Solidâ€State Fluorescence and Construction of Dualâ€Fluorescence Morphologies for White Lightâ€Emission. Advanced Materials, 2016, 28, 312-318.	11.1	527
2	Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nature Communications, 2019, 10, 1789.	5.8	419
3	Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. Journal of Power Sources, 2016, 302, 164-173.	4.0	358
4	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie - International Edition, 2019, 58, 7278-7283.	7.2	266
5	Luminescent Properties of a White Afterglow Phosphor CdSiO3:Dy3+. Chemistry of Materials, 2005, 17, 2108-2113.	3.2	242
6	All-Inorganic Light Convertor Based on Phosphor-in-Glass Engineering for Next-Generation Modular High-Brightness White LEDs/LDs. ACS Photonics, 2017, 4, 986-995.	3.2	223
7	Tunable Luminescent Properties and Concentration-Dependent, Site-Preferable Distribution of Eu ²⁺ Ions in Silicate Glass for White LEDs Applications. ACS Applied Materials & Amp; Interfaces, 2015, 7, 10044-10054.	4.0	197
8	Enhanced Biological Photosynthetic Efficiency Using Lightâ€Harvesting Engineering with Dualâ€Emissive Carbon Dots. Advanced Functional Materials, 2018, 28, 1804004.	7.8	189
9	Solidâ€State Carbon Dots with Red Fluorescence and Efficient Construction of Dualâ€Fluorescence Morphologies. Small, 2017, 13, 1700075.	5.2	165
10	Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors. Journal of Power Sources, 2016, 310, 145-153.	4.0	161
11	Synthesis, Characterization, and Oxygen Sensing Properties of Functionalized Mesoporous SBA-15 and MCM-41 with a Covalently Linked Ruthenium(II) Complex. Journal of Physical Chemistry C, 2007, 111, 11291-11301.	1.5	160
12	Carbon dots-based fluorescent probe for "off-on―sensing of Hg(II) and I. Biosensors and Bioelectronics, 2016, 79, 531-535.	5.3	155
13	Phytotoxicity, Uptake, and Translocation of Fluorescent Carbon Dots in Mung Bean Plants. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19939-19945.	4.0	151
14	Toward Bi ³⁺ Red Luminescence with No Visible Reabsorption through Manageable Energy Interaction and Crystal Defect Modulation in Single Bi ³⁺ -Doped ZnWO ₄ Crystal. Chemistry of Materials, 2017, 29, 8412-8424.	3.2	148
15	Two-site Cr ³⁺ occupation in the MgTa ₂ O ₆ :Cr ³⁺ phosphor toward broad-band near-infrared emission for vessel visualization. Journal of Materials Chemistry C, 2020, 8, 9322-9328.	2.7	147
16	A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 2020, 4, 437-448.	3.2	139
17	Carbon Dot-Silica Nanoparticle Composites for Ultralong Lifetime Phosphorescence Imaging in Tissue and Cells at Room Temperature. Chemistry of Materials, 2019, 31, 9887-9894.	3.2	137
18	Tunable dual emission of Ca ₃ Al ₄ ZnO ₁₀ :Bi ³⁺ ,Mn ⁴⁺ <i>via</i> beargy transfer for indoor plant growth lighting. Journal of Materials Chemistry C, 2018, 6, 8914-8922.	2.7	134

#	Article	IF	CITATIONS
19	From biomass wastes to vertically aligned graphene nanosheet arrays: A catalyst-free synthetic strategy towards high-quality graphene for electrochemical energy storage. Chemical Engineering Journal, 2018, 336, 550-561.	6.6	128
20	Large-scale synthesis of porous carbon <i>via</i> one-step CuCl ₂ activation of rape pollen for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 12046-12055.	5. 2	126
21	Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge. Journal of Materials Chemistry A, 2015, 3, 15225-15234.	5.2	125
22	A highly efficient and suitable spectral profile Cr3+-doped garnet near-infrared emitting phosphor for regulating photomorphogenesis of plants. Chemical Engineering Journal, 2022, 428, 132003.	6.6	118
23	Facile Preparation and Ultrastable Performance of Single-Component White-Light-Emitting Phosphor-in-Glass used for High-Power Warm White LEDs. ACS Applied Materials & Diterfaces, 2015, 7, 28122-28127.	4.0	112
24	Construction of Carbon Dots with Colorâ€Tunable Aggregationâ€Induced Emission by Nitrogenâ€Induced Intramolecular Charge Transfer. Advanced Materials, 2021, 33, e2104872.	11.1	112
25	Preparation and luminescence properties of CaSnO3:Sm3+ phosphor emitting in the reddish orange region. Optical Materials, 2007, 29, 1491-1494.	1.7	104
26	Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21009-21019.	4.0	102
27	Ultrastable red-emitting phosphor-in-glass for superior high-power artificial plant growth LEDs. Journal of Materials Chemistry C, 2018, 6, 1738-1745.	2.7	95
28	Spectra and long-lasting properties of Sm3+-doped yttrium oxysulfide phosphor. Materials Chemistry and Physics, 2004, 87, 227-232.	2.0	94
29	Fabrication of Reduced Graphene Oxide and Sliver Nanoparticle Hybrids for Raman Detection of Absorbed Folic Acid: A Potential Cancer Diagnostic Probe. ACS Applied Materials & Emp; Interfaces, 2013, 5, 4760-4768.	4.0	94
30	Synthesis of molecularly imprinted carbon dot grafted YVO4:Eu3+ for the ratiometric fluorescent determination of paranitrophenol. Biosensors and Bioelectronics, 2016, 86, 706-713.	5. 3	94
31	Eu ³⁺ â€Doped Phosphorâ€inâ€Glass: A Route toward Tunable Multicolor Materials for Nearâ€UV Highâ€Power Warmâ€White LEDs. Advanced Optical Materials, 2017, 5, 1600910.	3.6	92
32	Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates. Journal of Materials Chemistry C, 2017, 5, 6243-6250.	2.7	91
33	Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors. Journal of Materials Chemistry, 2005, 15, 4025.	6.7	90
34	The room temperature afterglow mechanism in carbon dots: Current state and further guidance perspective. Carbon, 2020, 165, 306-316.	5 . 4	89
35	Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3. Journal of Solid State Chemistry, 2004, 177, 1333-1337.	1.4	88
36	Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica. Journal of Materials Chemistry C, 2020, 8, 5744-5751.	2.7	86

#	Article	IF	CITATIONS
37	Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy. Nanoscale, 2018, 10, 5997-6004.	2.8	85
38	Construction and multifunctional applications of carbon dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence. Chemical Engineering Journal, 2018, 347, 505-513.	6.6	84
39	Co-substitution in Ca _{1â°'x} Y _x Al _{12â°'x} Mg _x O ₁₉ phosphors: local structure evolution, photoluminescence tuning and application for plant growth LEDs. Journal of Materials Chemistry C. 2018. 6, 4217-4224.	2.7	83
40	Amorphous Ni–Co Binary Oxide with Hierarchical Porous Structure for Electrochemical Capacitors. ACS Applied Materials & Diterfaces, 2015, 7, 24419-24429.	4.0	82
41	Fluorescent Nanoparticles for Super-Resolution Imaging. Chemical Reviews, 2022, 122, 12495-12543.	23.0	82
42	Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4:Mn2+ phosphor. Journal of Luminescence, 2006, 118, 173-178.	1.5	76
43	Largeâ€Scale Oneâ€Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon Dots/PVA Fluorescent Shape Memory Material. Advanced Optical Materials, 2018, 6, 1701150.	3 . 6	76
44	Long lasting phosphorescent properties of Ti doped ZrO2. Journal of Luminescence, 2007, 126, 822-826.	1.5	75
45	Bioimaging Application and Growth-Promoting Behavior of Carbon Dots from Pollen on Hydroponically Cultivated Rome Lettuce. ACS Omega, 2017, 2, 3958-3965.	1.6	73
46	Towards efficient dual-emissive carbon dots through sulfur and nitrogen co-doped. Journal of Materials Chemistry C, 2017, 5, 8014-8021.	2.7	73
47	Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow Materials. Angewandte Chemie - International Edition, 2021, 60, 22253-22259.	7.2	73
48	pH-Responsive carbon dots with red emission for real-time and visual detection of amines. Journal of Materials Chemistry C, 2020, 8, 11563-11571.	2.7	72
49	Improving the luminous efficacy and resistance to blue laser irradiation of phosphor-in-glass based solid state laser lighting through employing dual-functional sapphire plate. Journal of Materials Chemistry C, 2019, 7, 354-361.	2.7	70
50	Carbon dots as light converter for plant photosynthesis: Augmenting light coverage and quantum yield effect. Journal of Hazardous Materials, 2021, 410, 124534.	6. 5	69
51	Microtube Bundle Carbon Derived from Paulownia Sawdust for Hybrid Supercapacitor Electrodes. ACS Applied Materials & Derived Frances, 2013, 5, 4667-4677.	4.0	68
52	Precipitating CsPbBr ₃ quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. Journal of Materials Chemistry C, 2019, 7, 13139-13148.	2.7	68
53	Mosaic-Structured SnO 2 @C Porous Microspheres for High-Performance Supercapacitor Electrode Materials. Electrochimica Acta, 2014, 142, 157-166.	2.6	67
54	Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots. Carbohydrate Polymers, 2016, 151, 245-250.	5.1	67

#	Article	IF	CITATIONS
55	Synthesis of dual-emissive carbon dots with a unique solvatochromism phenomenon. Journal of Colloid and Interface Science, 2019, 555, 607-614.	5.0	66
56	Near-Ultraviolet to Near-Infrared Fluorescent Nitrogen-Doped Carbon Dots with Two-Photon and Piezochromic Luminescence. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27920-27927.	4.0	63
57	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie, 2019, 131, 7356-7361.	1.6	62
58	Luminescence properties of Sm3+-doped Sr3Sn2O7 phosphor. Materials Chemistry and Physics, 2010, 124, 912-915.	2.0	61
59	Anchoring Carbon Nanodots onto Nanosilica for Phosphorescence Enhancement and Delayed Fluorescence Nascence in Solid and Liquid States. Small, 2020, 16, e2005228.	5.2	61
60	Luminescent properties of orange-emitting long-lasting phosphorescence phosphor Ca2SnO4:Sm3+. Solid State Sciences, 2011, 13, 525-528.	1.5	60
61	Enhanced photoluminescence and phosphorescence properties of red CaAlSiN ₃ :Eu ²⁺ phosphor via simultaneous UV-NIR stimulation. Journal of Materials Chemistry C, 2015, 3, 4445-4451.	2.7	59
62	Full color control and white emission from CaZnOS:Ce ³⁺ ,Na ⁺ ,Mn ²⁺ phosphors via energy transfer. Journal of Materials Chemistry C, 2016, 4, 9711-9716.	2.7	58
63	Carbon Dots as a Protective Agent Alleviating Abiotic Stress on Rice (<i>Oryza sativa</i> L.) through Promoting Nutrition Assimilation and the Defense System. ACS Applied Materials & Eamp; Interfaces, 2020, 12, 33575-33585.	4.0	56
64	Selfâ€Quenchingâ€Resistant Red Emissive Carbon Dots with High Stability for Warm White Lightâ€Emitting Diodes with a High Color Rendering Index. Advanced Optical Materials, 2020, 8, 2000251.	3.6	56
65	Visible-light excitable thermally activated delayed fluorescence in aqueous solution from F, N-doped carbon dots confined in silica nanoparticles. Chemical Engineering Journal, 2021, 426, 130728.	6.6	55
66	Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite. Nanoscale, 2014, 6, 4598-4603.	2.8	54
67	Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis. Chemical Engineering Journal, 2021, 422, 130114.	6.6	54
68	Effect of RE3+ as a co-dopant in long-lasting phosphorescence CdSiO3:Mn2+ (RE=Y, La, Gd, Lu). Journal of Luminescence, 2006, 118, 33-38.	1.5	53
69	A triphenylamine derivative as an efficient organic light color-conversion material for white LEDs. Journal of Luminescence, 2008, 128, 67-73.	1.5	51
70	Antibacterial Activity and Synergetic Mechanism of Carbon Dots against Gram-Positive and -Negative Bacteria. ACS Applied Bio Materials, 2021, 4, 6937-6945.	2.3	51
71	Reddish-Orange Long-Lasting Phosphorescence of Ca[sub 2]Si[sub 5]N[sub 8]:Eu[sup 2+],Tm[sup 3+] Phosphor. Journal of the Electrochemical Society, 2010, 157, J196.	1.3	50
72	Melaleuca bark based porous carbons for hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 11661-11667.	3.8	50

#	Article	IF	Citations
73	Unusual Concentration Induced Antithermal Quenching of the Bi2+ Emission from Sr2P2O7:Bi2+. Inorganic Chemistry, 2015, 54, 6028-6034.	1.9	50
74	Red, orange, yellow and green luminescence by carbon dots: hydrogen-bond-induced solvation effects. Nanoscale, 2021, 13, 6846-6855.	2.8	49
75	Persistent luminescence in rare earth ion-doped gadolinium oxysulfide phosphors. Journal of Alloys and Compounds, 2010, 495, 247-253.	2.8	48
76	Temperatureâ€Dependent Emission Spectra of <scp><scp>Ca< scp>< scp><scp>\scp><scp>N< scp>< scp><scp>N< scp>< scp><scp>Tm< scp>< scp><scp>Xscp><scp>Tm< scp><scp>, scp><scp>Xscp><scp>Tm< scp><scp>, scp><scp>Xscp>Xscp>Xscp>Xscp>Xscp>Xscp>Xscp>X</scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp>	<syb>8<td>ub;:<scp><so< td=""></so<></scp></td></syb>	ub;: <scp><so< td=""></so<></scp>
77	Insights into luminescence quenching and detecting trap distribution in Ba ₂ Si ₅ N ₈ Eu ²⁺ phosphor with comprehensive considerations of temperature-dependent luminescence behaviors. Journal of Materials Chemistry C, 2015. 3. 9572-9579.	2.7	48
78	Cr3+ doped ZnGa2O4 far-red emission phosphor-in-glass: Toward high-power and color-stable plant growth LEDs with responds to all of phytochrome. Materials Research Bulletin, 2018, 108, 226-233.	2.7	47
79	Double carbon dot assembled mesoporous aluminas: solid-state dual-emission photoluminescence and multifunctional applications. Journal of Materials Chemistry C, 2018, 6, 2495-2501.	2.7	46
80	Carbon Dots in Hydroxy Fluorides: Achieving Multicolor Long-Wavelength Room-Temperature Phosphorescence and Excellent Stability via Crystal Confinement. Nano Letters, 2022, 22, 5127-5136.	4.5	46
81	Synthesis of Silicon Quantum Dots with Highly Efficient Full-Band UV Absorption and Their Applications in Antiyellowing and Resistance of Photodegradation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6634-6643.	4.0	45
82	Recent developments in luminescent nanoparticles for plant imaging and photosynthesis. Journal of Rare Earths, 2019, 37, 903-915.	2.5	44
83	<i>Salvia Miltiorrhiza</i> Derived Carbon Dots as Scavengers of Reactive Oxygen Species for Reducing Oxidative Damage of Plants. ACS Applied Nano Materials, 2021, 4, 113-120.	2.4	44
84	Cascade Resonance Energy Transfer for the Construction of Nanoparticles with Multicolor Long Afterglow in Aqueous Solutions for Information Encryption and Bioimaging. Advanced Optical Materials, 2022, 10, .	3.6	43
85	Synthesis of the complex fluoride LiBaF3 and optical spectroscopy properties of LiBaF3:M(M=Eu,Ce) through a solvothermal process. Journal of Solid State Chemistry, 2003, 175, 284-288.	1.4	42
86	Novel blue-violet photoluminescence from sputtered ZnO thin films. Journal of Alloys and Compounds, 2011, 509, 5437-5440.	2.8	42
87	Preparation and Properties of Carbon Dotâ€Grafted CaAl ₁₂ O ₁₉ :Mn ⁴⁺ Colorâ€Tunable Hybrid Phosphor. Advanced Optical Materials, 2016, 4, 427-434.	3.6	42
88	Multifunctional carbon dots for highly luminescent orange-emissive cellulose based composite phosphor construction and plant tissue imaging. Nanoscale, 2017, 9, 12976-12983.	2.8	42
89	Regulation Mechanisms of Carbon Dots in the Development of Lettuce and Tomato. ACS Sustainable Chemistry and Engineering, 2021, 9, 944-953.	3.2	42

Thermoluminescence and Temperatureâ€Dependent Afterglow Properties in
scp><scp>BaSi</scp></scp></sub><2</sub><scp>Cysub><2</sub></scp></sub></scp></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>

#	Article	IF	CITATIONS
91	Regulating the morphology and luminescence properties of CsPbBr ₃ perovskite quantum dots through the rigidity of glass network structure. Journal of Materials Chemistry C, 2020, 8, 17374-17382.	2.7	41
92	Characterization and properties of a Sr2Si5N8:Eu2+-based light-conversion agricultural film. Journal of Rare Earths, 2020, 38, 539-545.	2.5	41
93	PVA-Coated Fluorescent Carbon Dot Nanocapsules as an Optical Amplifier for Enhanced Photosynthesis of Lettuce. ACS Sustainable Chemistry and Engineering, 2020, 8, 3938-3949.	3.2	41
94	Red, green and blue aggregationâ€induced emissive carbon dots. Chinese Chemical Letters, 2021, 32, 3927-3930.	4.8	41
95	Biomimetic preparation of silicon quantum dots and their phytophysiology effect on cucumber seedlings. Journal of Materials Chemistry B, 2019, 7, 1107-1115.	2.9	40
96	Promoting the Growth of Mung Bean Plants through Uptake and Light Conversion of NaYF ₄ :Yb,Er@CDs Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 9751-9762.	3.2	40
97	Temperature-Dependent Luminescence Characteristic of SrSi2O2N2:Eu2+ Phosphor and Its Thermal Quenching Behavior. Journal of Materials Science and Technology, 2014, 30, 290-294.	5.6	39
98	Effect of H 3 BO 3 flux on the morphology and optical properties of Sr 2 MgAl 22 O 36 :Mn 4+ red phosphors for agricultural light conversion films. Ceramics International, 2016, 42, 13011-13017.	2.3	39
99	Pollen derived blue fluorescent carbon dots for bioimaging and monitoring of nitrogen, phosphorus and potassium uptake in Brassica parachinensisÂL RSC Advances, 2017, 7, 33459-33465.	1.7	39
100	Ratio fluorescent hybrid probe for visualized fluorescence detection of H2O2 in vitro and in vivo. Sensors and Actuators B: Chemical, 2020, 321, 128643.	4.0	39
101	Hierarchical NiO mesocrystals with tuneable high-energy facets for pseudocapacitive charge storage. Journal of Materials Chemistry A, 2017, 5, 6921-6927.	5.2	38
102	Tunable emission from green to red in the GdSr ₂ AlO ₅ :Tb ³⁺ ,Eu ³⁺ phosphor <i>via</i> efficient energy transfer. RSC Advances, 2018, 8, 3530-3535.	1.7	38
103	Energy Transfer Mediated Enhancement of Roomâ€√Temperature Phosphorescence of Carbon Dots Embedded in Matrixes. Advanced Optical Materials, 2022, 10, .	3.6	38
104	High hydrogen storage capacity of rice hull based porous carbon. International Journal of Hydrogen Energy, 2012, 37, 18888-18894.	3.8	37
105	Synthesis and Photoluminescence Properties of CaAlSiN3:Eu2+ Nanocrystals. Chemistry Letters, 2010, 39, 104-105.	0.7	36
106	Synthesis and characterization of Y2O2S:Eu3+, Mg2+, Ti4+ hollow nanospheres via a template-free route. Journal of Alloys and Compounds, 2012, 542, 207-212.	2.8	36
107	Surface functional carbon dots: chemical engineering applications beyond optical properties. Journal of Materials Chemistry C, 2020, 8, 16282-16294.	2.7	36
108	TiO ₂ /Chlorophyll S-Scheme Composite Photocatalyst with Improved Photocatalytic Bactericidal Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39446-39457.	4.0	36

#	Article	IF	CITATIONS
109	Oxidation-induced quenching mechanism of ultrabright red carbon dots and application in antioxidant RCDs/PVA film. Chemical Engineering Journal, 2021, 425, 131653.	6.6	36
110	Preparation, characterization and oxygen sensing properties of luminescent carbon dots assembled mesoporous silica microspheres. Journal of Colloid and Interface Science, 2016, 478, 256-262.	5.0	35
111	Highly efficient and dual broad emitting light convertor: an option for next-generation plant growth LEDs. Journal of Materials Chemistry C, 2019, 7, 3617-3622.	2.7	35
112	Amplified light harvesting for enhancing Italian lettuce photosynthesis using water soluble silicon quantum dots as artificial antennas. Nanoscale, 2020, 12, 155-166.	2.8	35
113	Calcium-Mobilizing Properties of <i>Salvia miltiorrhiza</i> -Derived Carbon Dots Confer Enhanced Environmental Adaptability in Plants. ACS Nano, 2022, 16, 4357-4370.	7.3	35
114	Synthesis and luminescence properties of SrAl2O4:Eu2+,Dy3+ hollow microspheres via a solvothermal co-precipitation method. Journal of Rare Earths, 2013, 31, 241-246.	2. 5	34
115	Multiemissive Room-Temperature Phosphorescent Carbon Dots@ZnAl ₂ O ₄ Composites by Inorganic Defect Triplet-State Energy Transfer. ACS Applied Materials & Interfaces, 2021, 13, 34705-34713.	4.0	34
116	A dual-emitting core–shell carbon dot–silica–phosphor composite for white light emission. Nanoscale, 2015, 7, 20142-20148.	2.8	33
117	Luminescent properties and energy transfer of luminescent carbon dots assembled mesoporous Al2O3: Eu3+ co-doped materials for temperature sensing. Journal of Colloid and Interface Science, 2017, 496, 8-15.	5.0	33
118	Facile synthesis of the desired red phosphor Li ₂ N ₆ :Eu ²⁺ for high CRI white LEDs and plant growth LED device. Journal of the American Ceramic Society, 2020, 103, 1773-1781.	1.9	33
119	Construction of NaYF ₄ :Yb,Er(Tm)@CDs composites for enhancing red and NIR upconversion emission. Journal of Materials Chemistry C, 2019, 7, 6231-6235.	2.7	32
120	Architecting ultra-bright silanized carbon dots by alleviating the spin-orbit coupling effect: a specific fluorescent nanoprobe to label dead cells. Chemical Engineering Journal, 2022, 428, 131168.	6.6	32
121	Structural and luminescence properties of Sr2VO4Cl and Sr5(VO4)3Cl: self-activated luminescence and unusual Eu3+ emission. RSC Advances, 2013, 3, 22206.	1.7	29
122	Energy transfer and tunable emission of Ca14Al10Zn6O35:Bi3+,Sm3+ phosphor. Materials Research Bulletin, 2018, 100, 56-61.	2.7	28
123	Size-controlled synthesis of fluorescent tungsten oxide quantum dots via one-pot ethanol-thermal strategy for ferric ions detection and bioimaging. Sensors and Actuators B: Chemical, 2018, 255, 290-298.	4.0	28
124	Synthesis of modified carbon dots with performance of ultraviolet absorption used in sunscreen. Optics Express, 2019, 27, 7629.	1.7	27
125	Facile Combustion Route for Low-Temperature Preparation of Sr ₂ SiO ₄ :Eu ²⁺ Phosphor and Its Photoluminescence Properties. Japanese Journal of Applied Physics, 2010, 49, 095001.	0.8	26
126	Preparation and properties of dual-mode luminescent NaYF ₄ :Yb,Tm@SiO ₂ /carbon dot nanocomposites. Journal of Materials Chemistry C, 2018, 6, 10360-10366.	2.7	26

#	Article	IF	CITATIONS
127	Preparation and oxygen sensing properties of a sol–gel derived thin film based on a covalently grafted ruthenium(II) complex. Sensors and Actuators B: Chemical, 2007, 123, 508-515.	4.0	25
128	A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors. Optical Materials, 2014, 36, 1802-1807.	1.7	25
129	Optical Energy Storage Properties of (Ca _{1â³<i>x</i>\$\sub>\$\si\sub>\$\si\sub>\$\}	1.9	25
130	Synthesis of double carbon dots co-doped mesoporous Al2O3 for ratiometric fluorescent determination of oxygen. Sensors and Actuators B: Chemical, 2017, 251, 918-926.	4.0	25
131	Synthesis and Optical Property Studies of Nanocrystalline ZrO[sub 2]:Ti Long-Lasting Phosphors. Journal of the Electrochemical Society, 2008, 155, K195.	1.3	24
132	Preparation and luminescence properties of green-light-emitting afterglow phosphor Ca8Mg(SiO4)4Cl2:Eu2+. Solid State Sciences, 2010, 12, 2177-2181.	1.5	24
133	Luminescent carbon dots assembled SBA-15 and its oxygen sensing properties. Sensors and Actuators B: Chemical, 2016, 230, 101-108.	4.0	24
134	A dual-emitting core–shell carbon dot–silica–phosphor composite for LED plant grow light. RSC Advances, 2017, 7, 16662-16667.	1.7	24
135	Enhanced luminescence performance of CaO:Ce ³⁺ ,Li ⁺ ,F ^{â^'} phosphor and its phosphor-in-glass based high-power warm LED properties. Journal of Materials Chemistry C, 2018, 6, 4077-4086.	2.7	24
136	Improving moisture stability of SrLiAl3N4:Eu2+ through phosphor-in-glass approach to realize its application in plant growing LED device. Journal of Colloid and Interface Science, 2019, 545, 195-199.	5.0	24
137	Enhanced Photogenerated Electron Transfer in a Semiartificial Photosynthesis System Based on Highly Dispersed Titanium Oxide Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 1822-1827.	2.1	24
138	Ultraâ€Wide Vis–NIR Mg ₂ Al ₄ Si ₅ O ₁₈ :Eu ²⁺ ,Cr ³⁺ Phosphor Containing Unusual NIR Luminescence Induced by Cr ³⁺ Occupying Tetrahedral Coordination for Hyperspectral Imaging, Advanced Optical Materials, 2022, 10,.	3.6	24
139	Preparation of Chitosan-Based Activated Carbon and Its Electrochemical Performance for EDLC. Journal of the Electrochemical Society, 2013, 160, H321-H326.	1.3	23
140	Oxygen-sensing materials based on ruthenium(II) complex covalently assembled mesoporous MSU-3 silica. Sensors and Actuators B: Chemical, 2011, 160, 677-683.	4.0	22
141	Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance. Applied Surface Science, 2012, 258, 6814-6818.	3.1	22
142	Luminescence Properties of Red Long-Lasting Phosphorescence Phosphor AlN:Mn ²⁺ . ECS Journal of Solid State Science and Technology, 2013, 2, R117-R120.	0.9	22
143	Enhanced performance of Ca2Si5N8:Eu2+, Tm3+ reddish-orange afterglow phosphor by co-doping with Dy3+. Optical Materials, 2014, 36, 1846-1849.	1.7	22
144	Luminescence properties of Eu3+/CDs/PVA composite applied in light conversion film. Optical Materials, 2016, 62, 458-464.	1.7	22

#	Article	IF	CITATIONS
145	Facile fabrication of a CD/PVA composite polymer to access light-responsive shape-memory effects. Journal of Materials Chemistry C, 2020, 8, 8935-8941.	2.7	22
146	Calcium-chloride-assisted approach towards green and sustainable synthesis of hierarchical porous carbon microspheres for high-performance supercapacitive energy storage. Journal of Colloid and Interface Science, 2021, 582, 159-166.	5.0	22
147	Large-scale synthesis and enhanced hydrogen storage of monodispersed sulfur-doped carbon microspheres by hydro-sulfur-thermal carbonization of starch. Materials Letters, 2013, 109, 279-282.	1.3	21
148	The role of fluorescent carbon dots in crops: Mechanism and applications. SmartMat, 2022, 3, 208-225.	6.4	21
149	Enhancement of luminescence intensity and increase of emission lifetime in Eu3+-doped 3CdO–Al2O3–3SiO2 amorphous system. Journal of Luminescence, 2008, 128, 105-109.	1.5	20
150	Preparation of <scp><scp>SrSi</scp></scp> Phosphor by <scp>SrSi</scp> Properties, Journal of the American Ceramic Society, 2013, 96, 1810-1814.	_{2<!--</td--><td>sub>:<scp><</scp></td>}	sub>: <scp><</scp>
151	Ratiometric and selective fluorescent sensor for Fe(III) and bovine serum albumin based on energy transfer. Sensors and Actuators B: Chemical, 2018, 262, 228-235.	4.0	20
152	Preparation of (Sr0.5Ba0.5)Si2N2O2:Eu2+ Phosphor and Its Luminescence Properties. Chemistry Letters, 2011, 40, 140-141.	0.7	19
153	Effect of supplemental blue light intensity on the growth and quality of Chinese kale. Horticulture Environment and Biotechnology, 2019, 60, 49-57.	0.7	19
154	F enhanced luminescence performance of SrLu2O4:Ce3+ glass ceramic for superior high-power artificial horticultural LEDs. Ceramics International, 2020, 46, 21560-21568.	2.3	19
155	Glass-ceramics with thermally stable blue-red emission for high-power horticultural LED applications. Journal of Materials Chemistry C, 2020, 8, 3996-4002.	2.7	19
156	Dose-Dependent Effect of ZnO Quantum Dots for Lettuce Growth. ACS Omega, 2021, 6, 10141-10149.	1.6	19
157	Oxygen-sensing materials based on [Ru(bpy)3]2+ covalently grafted MSU-3 mesoporous molecular sieves. Journal of Luminescence, 2008, 128, 1331-1338.	1.5	18
158	Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials. Materials Research Express, 2014, 1, 045007.	0.8	18
159	Red persistent and photo-stimulated luminescence properties of SrCaSi5N8: Eu2+, Tm3+ solid solution. Optical Materials, 2014, 36, 1855-1858.	1.7	18
160	Surface modification of MAl2O4:Eu2+,Dy3+ (M=Sr, Ca, Ba) phosphors to enhance water resistance by combustion method. Applied Surface Science, 2013, 282, 315-319.	3.1	17
161	Luminescence enhancement of CaMoO4:Eu3+ phosphor by charge compensation using microwave sintering method. Journal of Advanced Ceramics, 2015, 4, 318-325.	8.9	17
162	Tunable emission color and mixed valence state via the modified activator site in the AlN-doped Sr ₃ SiO ₅ Eu phosphor. RSC Advances, 2016, 6, 33076-33082.	1.7	17

#	Article	IF	Citations
163	In Situ Growth of High-Quality CsPbBr ₃ Quantum Dots with Unusual Morphology inside a Transparent Glass with a Heterogeneous Crystallization Environment for Wide Gamut Displays. ACS Applied Materials & Displays. ACS Applied Materials & Displays. ACS Applied Materials & Displays Account & Displays Accoun	4.0	17
164	Synthesis and electroluminescent properties of a carbozole-functionalized europium(III) complex. Journal of Luminescence, 2007, 126, 682-686.	1.5	16
165	Synthesis of high-efficient red carbon dots for pH detection. Journal of Luminescence, 2019, 215, 116640.	1.5	16
166	Enhancement of Fluorescence Emission for Tricolor Quantum Dots Assembled in Polysiloxane toward Solar Spectrumâ€Simulated White Lightâ€Emitting Devices. Small, 2020, 16, e1905266.	5.2	16
167	Temperature-Dependent Long-Lasting Phosphorescence in SrSi ₂ O ₂ N ₂ :Eu ²⁺ . ECS Journal of Solid State Science and Technology, 2013, 2, R60-R64.	0.9	15
168	Preparation and afterglow properties of highly condensed nitridosilicate BaSi7N10:Eu2+ phosphor. Journal of Luminescence, 2014, 152, 230-233.	1.5	15
169	Preparation and characterization of a luminescent carbon dots grafted CaSiO ₃ :Eu ³⁺ phosphor for ratiometric fluorescent oxygen sensing. RSC Advances, 2016, 6, 98554-98562.	1.7	15
170	A novel blue-emitting Ba5(BO3)2(B2O5):Ce3+ phosphor for application in near-UV white LEDs. Journal of Alloys and Compounds, 2016, 688, 1225-1232.	2.8	15
171	Solid-state silicon nanoparticles with color-tunable photoluminescence and multifunctional applications. Journal of Materials Chemistry C, 2019, 7, 5962-5969.	2.7	15
172	Promoted off-on recognition of H2O2 based on the fluorescence of silicon quantum dots assembled two-dimensional PEG-MnO2 nanosheets hybrid nanoprobe. Mikrochimica Acta, 2020, 187, 347.	2.5	15
173	Carbon dot grafted SrAl ₂ O ₄ :Eu,Dy dual-emitting phosphor for ratiometric temperature sensing. RSC Advances, 2015, 5, 89238-89243.	1.7	14
174	Preparation and properties of Sr2Si5N8:Eu2+–cellulose hybrid films for sunlight conversion. Cellulose, 2015, 22, 3337-3345.	2.4	13
175	Ordered mesoporous carbons with fiber- and rod-like morphologies for supercapacitor electrode materials. Materials Letters, 2015, 138, 37-40.	1.3	13
176	Spectral Red Shift of Cs ₄ Mn(Bi _{1–<i>x</i>} In _{<i>x</i>}) ₂ Cl ₁₂ Layered Double Perovskite by Adjusting the Microstructure of the [MnCl ₆] ^{4–} Octahedron, Journal of Physical Chemistry C, 2021, 125, 16938-16945.	1.5	13
177	Hemicellulose-triggered high-yield synthesis of carbon dots from biomass. New Journal of Chemistry, 2021, 45, 5484-5490.	1.4	13
178	Luminescence Properties of High-Quality Ca2Si5N8: Eu2+Phosphor: CaH2-Raw Material. ECS Journal of Solid State Science and Technology, 2013, 2, R165-R168.	0.9	12
179	Luminescent carbon dots assembled into mesoporous aluminas for oxygen sensing. Optical Materials Express, 2017, 7, 945.	1.6	12
180	Construction of NaYF4:Eu@carbon dots nanocomposites for multifunctional applications. Journal of Colloid and Interface Science, 2019, 543, 156-163.	5.0	12

#	Article	IF	Citations
181	Synthesis of SBA-15Âassembled with silicon nanoparticles with different morphologies for oxygen sensing. Microporous and Mesoporous Materials, 2020, 296, 110001.	2.2	12
182	Novel Indigo Light Emitting Long-lasting Phosphors CdSiO3: RE3+(RE = Y, La, Gd, Lu). Chemistry Letters, 2003, 32, 904-905.	0.7	11
183	Color-tunable and highly thermal stable Sr2MgAl22O36:Tb3+ phosphors. Materials Chemistry and Physics, 2017, 193, 302-310.	2.0	11
184	Room temperature long afterglow from boron oxide: A boric acid calcined product. Materials Letters, 2020, 276, 128226.	1.3	11
185	Nitrogen and Sulfur Co-doped Carbon Dots Enhance Drought Resistance in Tomato and Mung Beans. ACS Applied Bio Materials, 2021, 4, 6093-6102.	2.3	11
186	Immunoregulatory Activity of Herbal Tea-Derived Carbon Dots. ACS Applied Bio Materials, 2022, 5, 1604-1609.	2.3	11
187	内嵌碳ç,¹çš"æ—é"…é‡'属ååŒ−ç‰©å•æ™¶ç"¨äºŽå•组å^†ç™½å…‰å•射体. Science China Materials	, 2 02 2, 65	5, 2 8 02-2808.
188	Simple Additive-Free Method to Manganese Monoxide Mesocrystals and Their Template Application for the Synthesis of Carbon and Graphitic Hollow Octahedrons. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12561-12570.	4.0	10
189	Solid-state fluorescent composite phosphor based on cellulose grafted with carbon dots for temperature sensing. RSC Advances, 2016, 6, 90126-90131.	1.7	10
190	Photoluminescence properties and energy transfer between activators at different crystallographic sites in Ce3+ doped Sr2MgAl22O36. Ceramics International, 2016, 42, 16659-16665.	2.3	10
191	Cation–anion substitution induced spectral tuning and thermal stability optimization in Sr ₂ SiO ₄ :Eu phosphors. RSC Advances, 2017, 7, 8230-8235.	1.7	10
192	Luminescence properties of Eu2+-activated NaCaBeSi2O6F for white light-emitting diode applications. Materials Research Bulletin, 2018, 100, 26-31.	2.7	10
193	Precipitating tunable-emission CsPb(Cl/Br) ₃ QDs in boro-germanate glass for wide-color-gamut liquid crystal displays. Journal of Information Display, 2019, 20, 193-200.	2.1	10
194	Unusual concentration induced antithermal quenching of the Eu 2+ emission at 490 nm in Sr 4 Al 14 O 25 :Eu 2+ for near ultraviolet excited white LEDs. Journal of the American Ceramic Society, 2020, 103, 5758-5768.	1.9	10
195	<i>Salvia miltiorrhiza</i> Derived Carbon Dots and Their Heat Stress Tolerance of Italian Lettuce by Promoting Growth and Enhancing Antioxidant Enzyme Activity. ACS Omega, 2021, 6, 32262-32269.	1.6	10
196	Synthesis of Carbon Dots with Carbogenic π-Conjugated Domains for Full-Band UV Shielding. ACS Applied Nano Materials, 2022, 5, 9140-9149.	2.4	10
197	Uptake, translocation and toxicity of fluorescent carbon dots in oyster mushroom (Pleurotus) Tj ETQq1 1 0.784	314 rgBT / 1.5	Ovgrlock 10
198	Preparation and Luminescence Properties of CaAlSiN ₃ : Eu ² ⁺ . Science of Advanced Materials, 2017, 9, 661-667.	0.1	9

#	Article	IF	CITATIONS
199	Room temperature phosphorescence from Si-doped-CD-based composite materials with long lifetimes and high stability. Optics Express, 2020, 28, 19550.	1.7	9
200	Large-Scale Preparation of Peanut-Bran-Derived Carbon Dots and Their Promoting Effect on Italian Lettuce. ACS Agricultural Science and Technology, 2022, 2, 215-221.	1.0	9
201	Luminescence properties of silk cocoon derived carbonaceous fluorescent nanoparticles/PVA hybrid film. Optical Materials, 2014, 36, 1787-1791.	1.7	8
202	Using hydrogen peroxide to mediate through a one-step hydrothermal method for the fast and green synthesis of N-CDs. RSC Advances, 2015, 5, 95744-95749.	1.7	8
203	Synthesis of hybrid Ni-Co oxide @ 3D carbon skeleton derived from pollen grains for advanced supercapacitors. Electrochimica Acta, 2016, 210, 695-703.	2.6	8
204	Additives and solvents-induced phase and morphology modification of NaYF4 for improving up-conversion emission. Journal of Solid State Chemistry, 2016, 233, 178-185.	1.4	8
205	Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow Materials. Angewandte Chemie, 2021, 133, 22427-22433.	1.6	8
206	Oxygen-sensing properties of ormosil hybrid materials doped with ruthenium(II) complexes via a solâ \in "gel process. Materials Letters, 2007, 61, 3374-3377.	1.3	7
207	Effect of C3N6H6 on Luminescent Properties of SrSi2N2O2:Eu2+ Yellow Phosphors Prepared by Microwave Reaction Method. Energy Procedia, 2012, 16, 391-396.	1.8	7
208	Luminescent properties of green long-lasting Ca8Mg(SiO4)4Cl2:Eu2+, from Ca2SiO4:Eu3+ and MgCl2 at low temperature. Physica B: Condensed Matter, 2013, 430, 31-35.	1.3	7
209	Extraction of graphitic carbon quantum dots by hydrothermal treatment commercially activated carbon: the role of cation–π interaction. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	7
210	Assembly of shell/core CDs@CaF ₂ nanocomposites to endow polymers with multifunctional properties. Nanotechnology, 2019, 30, 155601.	1.3	7
211	One-Pot H ₂ O ₂ -Assisted Hydrothermal Carbonization for the Synthesis of Fluorescent Graphene Quantum Dots Derived from Sewage Sludge. Science of Advanced Materials, 2016, 8, 948-955.	0.1	7
212	Modulating the local structure of glass to promote <i>in situ</i> precipitation of perovskite CsPbBr ₃ quantum dots by introducing a network modifier. Journal of Materials Chemistry C, 2022, 10, 8634-8641.	2.7	7
213	Enhanced persistent properties of Mn ²⁺ activated CaZnOS. RSC Advances, 2017, 7, 38498-38505.	1.7	6
214	Enhanced absorption of Sr3Lu2(BO3)4:Ce3+,Tb3+ phosphor with energy transfer for UV-pumped white LEDs. Journal of Alloys and Compounds, 2019, 789, 215-220.	2.8	6
215	Preparation and oxygen sensing properties of water-soluble silicon nanoparticles assembled SBA-15. Materials Research Bulletin, 2019, 111, 1-6.	2.7	6
216	Self-formed C-dot-based 2D polysiloxane with high photoluminescence quantum yield and stability. Nanoscale, 2020, 12, 10771-10780.	2.8	6

#	Article	IF	Citations
217	A rapid construction strategy of NaYF ₄ :Yb,Er@CDs nanocomposites for dual-mode anti-counterfeiting. Materials Advances, 2022, 3, 4542-4547.	2.6	6
218	Upconversion of Y[sub 2]O[sub 2]S:Tm, Mg, Ti Phosphor and Its Long-lasting Phosphorescence. Electrochemical and Solid-State Letters, 2004, 7, G225.	2.2	5
219	Synthesis, photoluminescence properties and energy transfer studies of color-adjustable CaSrSiO4:Ce3+,Li+,Mn2+ phosphors. Journal of Luminescence, 2015, 168, 92-97.	1.5	5
220	Sol–Gel-Derived Highly Sensitive Optical Oxygen Sensing Materials Using Ru(II) Complex via Covalent Grafting Strategy. Journal of Nanoscience and Nanotechnology, 2014, 14, 4615-4621.	0.9	4
221	A facile route to the synthesis of sub-5 nm monodispersed cubic NaYF4: Yb3+/Er3+ nanocrystals. Materials Letters, 2016, 178, 260-263.	1.3	4
222	One-step preparation of carbon dot-grafted trisodium citrate dihydrate for tunable photoluminescence and white light-emitting diodes. RSC Advances, 2016, 6, 104724-104730.	1.7	4
223	Synthesis of monodispersed hierarchical Yb(OH) x F 3â^'x microcrystals and their conversion to Yb 6 O 5 F 8. Materials Research Bulletin, 2017, 94, 489-492.	2.7	4
224	Flux-Assisted Preparation and Photoluminescence of Emission-Tunable (Sr,Eu)Al ₂ Si ₂ O ₈ Phosphors. Journal of Nanoscience and Nanotechnology, 2018, 18, 374-380.	0.9	4
225	Preparation of Ca 2 Si 5 N 8 :Eu2+, $Tm3$ +phosphor by calcium hydride and its afterglow properties., 2009,,.		3
226	Oxygen Sensing Properties of Cu(I) Complex/Polystyrene Composite Nanofibers Prepared by Electrospinning. Journal of Nanoscience and Nanotechnology, 2011, 11, 9840-9845.	0.9	3
227	Synthesis and electrochemical properties of carbon microtubes by a simple in situ template method. Materials Letters, 2013, 95, 44-47.	1.3	3
228	In Situ Topotactic Synthesis of Monodispersed Hierarchically Nanostructured Yttriumâ€Based Microspindles from a Mesocrystal Precursor. European Journal of Inorganic Chemistry, 2016, 2016, 3990-3993.	1.0	3
229	Transcriptomics Integrated with Metabolomics Reveals 2-Methoxy-1, 4-Naphthoquinone-Based Carbon Dots Induced Molecular Shifts in Penicillium italicum. Journal of Fungi (Basel, Switzerland), 2022, 8, 420.	1.5	3
230	Effects of Ni Particle Size on Hydrogen Storage of Ni-Doped High Surface Area Activated Carbon. Australian Journal of Chemistry, 2013, 66, 548.	0.5	2
231	Temperature and Oxygen Sensing Properties of Ru(II) Covalently-Grafted Sol–Gel Derived Ormosil Hybrid Materials. Journal of Nanoscience and Nanotechnology, 2016, 16, 4023-4028.	0.9	2
232	Laser speckle reduction via TiO ₂ â€sapphire composite rotating wheel in laser projection. Journal of the American Ceramic Society, 2022, 105, 4512-4520.	1.9	1
233	SYNTHESIS AND FORMATION MECHANISM OF STRAIGHT CARBON MICROTUBES BY A SIMPLE IN SITU TEMPLATE APPROACH. Functional Materials Letters, 2012, 05, 1250050.	0.7	0
234	Preparation and Luminescence Properties of Ca0.8–xSr0.2F2:xEu2+ Blue Light Conversion Agents. Science of Advanced Materials, 2017, 9, 519-522.	0.1	0

#	Article	IF	CITATIONS
235	Preparation and Characterization of CaF ₂ :Yb ³ ⁺ , Er ³⁺ Up-Conversion Phosphor. Science of Advanced Materials, 2017, 9, 523-527.	0.1	O
236	Effect of Substituting Y3+ for Ca2+ on the Up-Conversion Luminescence Properties of CaF2:Yb3+, Er3+. Science of Advanced Materials, 2017, 9, 528-532.	0.1	0