Chun-Xiu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5570209/publications.pdf

Version: 2024-02-01

331670 361022 1,249 39 21 35 citations h-index g-index papers 41 41 41 1113 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Removing the Obstacle to $(\hat{a}^2)\hat{a}\in M$ enthol Biosynthesis by Building a Microbial Cell Factory of $(+)\hat{a}\in A$ is cisc/is A is opulegone from $(\hat{a}^2)\hat{a}\in A$ imonene. ChemSusChem, 2022, 15, .	6.8	4
2	Carving the Active Site of CYP153A7 Monooxygenase for Improving Terminal Hydroxylation of Mediumâ€Chain Fatty Acids. ChemBioChem, 2022, , .	2.6	6
3	Facile Production of (+)-Aristolochene and (+)-Bicyclogermacrene in <i>Escherichia coli</i> Newly Discovered Sesquiterpene Synthases from <i>Penicillium expansum</i> Journal of Agricultural and Food Chemistry, 2022, 70, 5860-5868.	5.2	4
4	Discovery and Engineering of a Novel Baeyerâ€Villiger Monooxygenase with High Normal Regioselectivity. ChemBioChem, 2021, 22, 1190-1195.	2.6	6
5	Design of a self-sufficient hydride-shuttling cascade for concurrent bioproduction of 7,12-dioxolithocholate and <scp>l < /scp>- <i>tert < /i> - leucine. Green Chemistry, 2021, 23, 4125-4133.</i></scp>	9.0	16
6	Discovery and Engineering of Bacterial (â^')â€Isopiperitenol Dehydrogenases to Enhance (â^')â€Menthol Precursor Biosynthesis. Advanced Synthesis and Catalysis, 2021, 363, 3973-3982.	4.3	3
7	Evolution of Glucose Dehydrogenase for Cofactor Regeneration in Bioredox Processes with Denaturing Agents. ChemBioChem, 2020, 21, 2680-2688.	2.6	26
8	Efficient Synthesis of 12â€Oxochenodeoxycholic Acid Using a 12αâ€Hydroxysteroid Dehydrogenase from <i>Rhodococcus ruber</i> . Advanced Synthesis and Catalysis, 2019, 361, 4661-4668.	4.3	20
9	Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase. Applied and Environmental Microbiology, 2019, 85, .	3.1	5
10	Switching Cofactor Dependence of $7\hat{l}^2$ -Hydroxysteroid Dehydrogenase for Cost-Effective Production of Ursodeoxycholic Acid. ACS Catalysis, 2019, 9, 466-473.	11.2	46
11	Reshaping the Active Pocket of Amine Dehydrogenases for Asymmetric Synthesis of Bulky Aliphatic Amines. ACS Catalysis, 2018, 8, 2622-2628.	11.2	100
12	Continuous Production of Ursodeoxycholic Acid by Using Two Cascade Reactors with Coâ€immobilized Enzymes. ChemBioChem, 2018, 19, 347-353.	2.6	32
13	Direct Access to Mediumâ€Chain α,ωâ€Dicarboxylic Acids by Using a Baeyer–Villiger Monooxygenase of Abnormal Regioselectivity. ChemBioChem, 2018, 19, 2049-2054.	2.6	13
14	Engineering $7\hat{l}^2$ -Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution. Journal of Agricultural and Food Chemistry, 2017, 65, 1178-1185.	5,2	43
15	Efficient Degradation of Malathion in the Presence of Detergents Using an Engineered Organophosphorus Hydrolase Highly Expressed by <i>Pichia pastoris</i> Journal of Agricultural and Food Chemistry, 2017, 65, 9094-9100.	5. 2	18
16	Preparation of Structurally Diverse Chiral Alcohols by Engineering Ketoreductase <i>Cg</i> KR1. ACS Catalysis, 2017, 7, 7174-7181.	11.2	74
17	Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester. Applied Biochemistry and Biotechnology, 2017, 183, 543-554.	2.9	6
18	Enhancing transglutaminase production of Streptomyces mobaraensis by iterative mutagenesis breeding with atmospheric and room-temperature plasma (ARTP). Bioresources and Bioprocessing, 2017, 4, 37.	4.2	27

#	Article	IF	Citations
19	Improved efficiency of a novel methyl parathion hydrolase using consensus approach. Enzyme and Microbial Technology, 2016, 93-94, 11-17.	3.2	11
20	A Novel (<i>R</i>)â€lmine Reductase from <i>Paenibacillus lactis</i> for Asymmetric Reduction of 3 <i>H</i> â€lndoles. ChemCatChem, 2016, 8, 724-727.	3.7	30
21	Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis. Biotechnology and Bioengineering, 2016, 113, 2350-2357.	3.3	30
22	Iterative multitarget evolution dramatically enhances the enantioselectivity and catalytic efficiency of Bacillus subtilis esterase towards bulky benzoate esters of <scp>dl</scp> -menthol. Catalysis Science and Technology, 2016, 6, 2370-2376.	4.1	11
23	Two-step enzymatic synthesis of ursodeoxycholic acid with a new $7\hat{l}^2$ -hydroxysteroid dehydrogenase from Ruminococcus torques. Process Biochemistry, 2015, 50, 598-604.	3.7	58
24	Draft Genome Sequence of <i>Burkholderia</i> sp. Strain MP-1, a Methyl Parathion (MP)-Degrading Bacterium from MP-Contaminated Soil. Genome Announcements, 2014, 2, .	0.8	11
25	Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3247-3253.	1.7	27
26	Performance of a New Thermostable Mannanase in Breaking Guar-Based Fracturing Fluids at High Temperatures with Little Premature Degradation. Applied Biochemistry and Biotechnology, 2014, 172, 1215-1226.	2.9	12
27	A thermostable variant of Bacillus subtilis esterase: Characterization and application for resolving dl-menthyl acetate. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 1-8.	1.8	10
28	Efficient Synthesis of a Chiral Precursor for Angiotensin-Converting Enzyme (ACE) Inhibitors in High Space-Time Yield by a New Reductase without External Cofactors. Organic Letters, 2012, 14, 1982-1985.	4.6	68
29	Bioreduction of methyl o-chlorobenzoylformate at 500gLâ^1 without external cofactors for efficient production of enantiopure clopidogrel intermediate. Tetrahedron Letters, 2012, 53, 4715-4717.	1.4	27
30	A new thermostable \hat{l}^2 -glucosidase mined from Dictyoglomus thermophilum: Properties and performance in octyl glucoside synthesis at high temperatures. Bioresource Technology, 2012, 118, 425-430.	9.6	28
31	Stereospecific Reduction of Methyl <i>o</i> â€Chlorobenzoylformate at 300â€gâ <l<sup>â°¹1 without Additional Cofactor using a Carbonyl Reductase Mined from <i>Candida glabrata</i> Advanced Synthesis and Catalysis, 2012, 354, 1765-1772.</l<sup>	4.3	59
32	Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Applied Microbiology and Biotechnology, 2012, 95, 91-99.	3.6	56
33	Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Organic and Biomolecular Chemistry, 2011, 9, 5463.	2.8	50
34	Crosslinking of enzyme coaggregate with polyethyleneimine: A simple and promising method for preparing stable biocatalyst of Serratia marcescens lipase. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 256-261.	1.8	35
35	Immobilization of Bacillus subtilis esterase by simple cross-linking for enzymatic resolution of dl-menthyl acetate. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 138-143.	1.8	30
36	Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity. Applied Microbiology and Biotechnology, 2011, 89, 1111-1118.	3.6	61

Chun-Xiu Li

#	Article	IF	CITATION
37	Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. Bioresource Technology, 2011, 102, 7023-7028.	9.6	129
38	Thermostable Bacterial Endoglucanases Mined from Swiss-Prot Database. Applied Biochemistry and Biotechnology, 2011, 165, 1473-1484.	2.9	3
39	Efficient Reduction of Ethyl 2â€Oxoâ€4â€phenylbutyrate at 620â€gâ‹L ^{â^'1} by a Bacterial Reduction With Broad Substrate Spectrum. Advanced Synthesis and Catalysis, 2011, 353, 1213-1217.	tase 4.3	54