Michal Kruk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5570048/publications.pdf Version: 2024-02-01

Міснлі Кріїк

#	Article	IF	CITATIONS
1	Formation of Double-Helical Structures by Silica Nanotubes Templated by Mixtures of Common Nonionic Surfactants in Aqueous Solutions. ACS Nano, 2021, 15, 1016-1029.	14.6	5
2	Characterization of micelle-templated silica nanotubes and nanotube bundles using tilt-series transmission electron microscopy. Microporous and Mesoporous Materials, 2020, 293, 109760.	4.4	3
3	Structures and dimensions of micelle-templated nanoporous silicas derived from swollen spherical micelles of temperature-dependent size. Journal of Colloid and Interface Science, 2019, 544, 312-320.	9.4	16
4	Ethylene-bridged organosilica nanotubes of controlled inner diameter templated by judiciously selected Pluronic surfactant. Microporous and Mesoporous Materials, 2019, 278, 340-347.	4.4	3
5	Swollen mixed Pluronic surfactant micelles as templates for mesoporous nanotubes with diverse bridged-organosilica frameworks. Journal of Colloid and Interface Science, 2018, 524, 445-455.	9.4	16
6	Silica Nanotubes with Widely Adjustable Inner Diameter and Ordered Silicas with Ultralarge Cylindrical Mesopores Templated by Swollen Micelles of Mixed Pluronic Triblock Copolymers. Chemistry of Materials, 2017, 29, 4675-4681.	6.7	20
7	Amine-modified silica nanotubes and nanospheres: synthesis and CO ₂ sorption properties. Environmental Science: Nano, 2016, 3, 806-817.	4.3	26
8	Synthesis of Xylylene-Bridged Periodic Mesoporous Organosilicas and Related Hollow Spherical Nanoparticles. Langmuir, 2016, 32, 900-908.	3.5	18
9	Synthesis of large-pore face-centered-cubic periodic mesoporous organosilicas with unsaturated bridging groups. Microporous and Mesoporous Materials, 2016, 222, 153-159.	4.4	27
10	Tuning of the Temperature Window for Unitâ€Cell and Poreâ€Size Enlargement in Faceâ€Centeredâ€Cubic Largeâ€Mesopore Silicas Templated by Swollen Block Copolymer Micelles. Chemistry - A European Journal, 2015, 21, 12747-12754.	3.3	9
11	Ordered arrays of hollow carbon nanospheres and nanotubules from polyacrylonitrile grafted on ordered mesoporous silicas using atom transfer radical polymerization. Polymer, 2015, 72, 356-360.	3.8	13
12	Versatile Surfactant/Swelling-Agent Template for Synthesis of Large-Pore Ordered Mesoporous Silicas and Related Hollow Nanoparticles. Chemistry of Materials, 2015, 27, 679-689.	6.7	65
13	Pluronic-P123-Templated Synthesis of Silica with Cubic <i>la</i> 3 <i>d</i> Structure in the Presence of Micelle Swelling Agent. Langmuir, 2015, 31, 7623-7632.	3.5	14
14	Single-micelle-templated synthesis of hollow silica nanospheres with tunable pore structures. RSC Advances, 2015, 5, 69870-69877.	3.6	25
15	Ethyleneâ€bridged Periodic Mesoporous Organosilicas with Large Spherical Pores Templated by PEOâ€PPOâ€PEO Surfactant Micelles Swollen by Ethylbenzene. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 624-631.	1.2	6
16	Preparation of porous nanocarbons with tunable morphology and pore size from copolymer templated precursors. Materials Horizons, 2014, 1, 121-124.	12.2	34
17	Short synthesis of ordered silicas with very large mesopores. RSC Advances, 2014, 4, 331-339.	3.6	15
18	Family of Single-Micelle-Templated Organosilica Hollow Nanospheres and Nanotubes Synthesized through Adjustment of Organosilica/Surfactant Ratio. Chemistry of Materials, 2012, 24, 123-132.	6.7	117

#	Article	IF	CITATIONS
19	Surfactant-Templated Synthesis of Ordered Silicas with Closed Cylindrical Mesopores. Chemistry of Materials, 2012, 24, 149-154.	6.7	28
20	Poly(N-isopropylacrylamide) and poly(2-(dimethylamino)ethyl methacrylate) grafted on an ordered mesoporous silica surface using atom transfer radical polymerization with activators regenerated by electron transfer. Journal of Materials Chemistry, 2012, 22, 6939.	6.7	28
21	Face-Centered-Cubic Large-Pore Periodic Mesoporous Organosilicas with Unsaturated and Aromatic Bridging Groups. Langmuir, 2012, 28, 8737-8745.	3.5	15
22	Access to Ultralarge-Pore Ordered Mesoporous Materials through Selection of Surfactant/Swelling-Agent Micellar Templates. Accounts of Chemical Research, 2012, 45, 1678-1687.	15.6	122
23	Grafting of Poly(methyl methacrylate) on the Surface of Cylindrical Mesopores of Ordered Silica via Atom Transfer Radical Polymerization. ACS Symposium Series, 2012, , 231-240.	0.5	1
24	Surfaceâ€Initiated Controlled Radical Polymerization in Ordered Mesoporous Silicas. Israel Journal of Chemistry, 2012, 52, 246-255.	2.3	24
25	Synthesis of ultra-large-pore FDU-12 silica using ethylbenzene as micelle expander. Journal of Colloid and Interface Science, 2012, 365, 137-142.	9.4	29
26	Synthesis of Large-Pore Periodic Mesoporous Organosilicas Using Hexane as Swelling Agent. ACS Symposium Series, 2011, , 249-261.	0.5	1
27	"Click―Grafting of High Loading of Polymers and Monosaccharides on Surface of Ordered Mesoporous Silica. Langmuir, 2010, 26, 2688-2693.	3.5	51
28	A family of ordered mesoporous carbons derived from mesophase pitch using ordered mesoporous silicas as templates. Adsorption, 2010, 16, 465-472.	3.0	12
29	Grafting of polymer brushes from nanopore surface via atom transfer radical polymerization with activators regenerated by electron transfer. Polymer Chemistry, 2010, 1, 97-101.	3.9	42
30	Synthesis of Ultralarge-Pore FDU-12 Silica with Face-Centered Cubic Structure. Langmuir, 2010, 26, 14871-14878.	3.5	73
31	Versatile approach to synthesis of 2-D hexagonal ultra-large-pore periodic mesoporous organosilicas. Journal of Materials Chemistry, 2010, 20, 7506.	6.7	41
32	Large-Pore Ethylene-Bridged Periodic Mesoporous Organosilicas with Face-Centered Cubic Structure. Journal of Physical Chemistry C, 2010, 114, 20091-20099.	3.1	34
33	Synthesis of large-pore SBA-15 silica using poly(ethylene oxide)-poly(methyl acrylate) diblock copolymers. Adsorption, 2009, 15, 156-166.	3.0	10
34	Synthesis of Ultra-Large-Pore SBA-15 Silica with Two-Dimensional Hexagonal Structure Using Triisopropylbenzene As Micelle Expander. Chemistry of Materials, 2009, 21, 1144-1153.	6.7	228
35	Nanoporous Carbon Films from "Hairy―Polyacrylonitrileâ€Grafted Colloidal Silica Nanoparticles. Advanced Materials, 2008, 20, 1516-1522.	21.0	76
36	Synthesis and characterization of large-pore FDU-12 silica. Microporous and Mesoporous Materials, 2008, 114, 64-73.	4.4	57

#	Article	IF	CITATIONS
37	Thermally Induced Transition between Open and Closed Spherical Pores in Ordered Mesoporous Silicas. Journal of the American Chemical Society, 2008, 130, 1528-1529.	13.7	60
38	Grafting Monodisperse Polymer Chains from Concave Surfaces of Ordered Mesoporous Silicas. Macromolecules, 2008, 41, 8584-8591.	4.8	128
39	Pore Size Tailoring in Large-Pore SBA-15 Silica Synthesized in the Presence of Hexane. Langmuir, 2007, 23, 7247-7254.	3.5	147
40	Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. Microporous and Mesoporous Materials, 2007, 102, 178-187.	4.4	88
41	Hydrothermal stability of SBA-15 and related ordered mesoporous silicas with plugged pores. Journal of Materials Chemistry, 2006, 16, 2824.	6.7	84
42	Advances in Nanostructured Carbons from Block Copolymers Prepared by Controlled Radical Polymerization Techniques. ACS Symposium Series, 2006, , 295-310.	0.5	7
43	Adsorption Monitoring of Hydrothermal and Thermal Stability of Polymer-Templated Mesoporous Materials. Adsorption, 2005, 11, 745-750.	3.0	0
44	Synthesis of FDU-1 Silica with Narrow Pore Size Distribution and Tailorable Pore Entrance Size in the Presence of Sodium Chloride. Journal of Physical Chemistry B, 2005, 109, 3838-3843.	2.6	33
45	Synthesis of Mesoporous Carbons Using Ordered and Disordered Mesoporous Silica Templates and Polyacrylonitrile as Carbon Precursor. Journal of Physical Chemistry B, 2005, 109, 9216-9225.	2.6	200
46	Exceptionally High Stability of Copolymer-Templated Ordered Silica with Large Cage-Like Mesopores. Chemistry of Materials, 2004, 16, 698-707.	6.7	63
47	Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time. Journal of Physical Chemistry B, 2004, 108, 11480-11489.	2.6	333
48	Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes. Chemistry of Materials, 2003, 15, 2815-2823.	6.7	250
49	Argon Adsorption at 77 K as a Useful Tool for the Elucidation of Pore Connectivity in Ordered Materials with Large Cagelike Mesopores. Chemistry of Materials, 2003, 15, 2942-2949.	6.7	148
50	Ordered Mesoporous Silica with Large Cage-Like Pores:  Structural Identification and Pore Connectivity Design by Controlling the Synthesis Temperature and Time. Journal of the American Chemical Society, 2003, 125, 821-829.	13.7	367
51	Characterization of Regular and Plugged SBA-15 Silicas by Using Adsorption and Inverse Carbon Replication and Explanation of the Plug Formation Mechanism. Journal of Physical Chemistry B, 2003, 107, 2205-2213.	2.6	184
52	Surface Modifications of Cage-like and Channel-like Mesopores and Their Implications for Evaluation of Sizes of Entrances to Cage-like Mesopores. Journal of Physical Chemistry B, 2003, 107, 11900-11906.	2.6	41
53	Evidence for General Nature of Pore Interconnectivity in 2-Dimensional Hexagonal Mesoporous Silicas Prepared Using Block Copolymer Templates. Journal of Physical Chemistry B, 2002, 106, 4640-4646.	2.6	208
54	Determination and Tailoring the Pore Entrance Size in Ordered Silicas with Cage-like Mesoporous Structures. Journal of the American Chemical Society, 2002, 124, 768-769.	13.7	121

#	Article	IF	CITATIONS
55	Determination of Mesopore Size Distributions from Argon Adsorption Data at 77 K. Journal of Physical Chemistry B, 2002, 106, 4732-4739.	2.6	101
56	Synthesis of Large-Pore Silica with Cage-Like Structure Using Sodium Silicate and Triblock Copolymer Template. Langmuir, 2002, 18, 884-890.	3.5	102
57	Synthesis and characterization of ordered mesoporous silicas with high loadings of methyl groups. Journal of Materials Chemistry, 2002, 12, 3452-3457.	6.7	40
58	Periodic Mesoporous Organosilica with Large Cagelike Pores. Chemistry of Materials, 2002, 14, 1903-1905.	6.7	158
59	Metamorphosis of Ordered Mesopores to Micropores:  Periodic Silica with Unprecedented Loading of Pendant Reactive Organic Groups Transforms to Periodic Microporous Silica with Tailorable Pore Size. Journal of the American Chemical Society, 2002, 124, 6383-6392.	13.7	118
60	Novel Bifunctional Periodic Mesoporous Organosilicas, BPMOs:Â Synthesis, Characterization, Properties and in-Situ Selective Hydroborationâ	13.7	260
61	Gas Adsorption Characterization of Ordered Organicâ rînorganic Nanocomposite Materials. Chemistry of Materials, 2001, 13, 3169-3183.	6.7	3,036
62	Synthesis and characterization of europium-doped ordered mesoporous silicas. Journal of Materials Chemistry, 2001, 11, 2580-2586.	6.7	17
63	Reference Data for Argon Adsorption on Graphitized and Nongraphitized Carbon Blacks. Journal of Physical Chemistry B, 2001, 105, 12516-12523.	2.6	93
64	Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chemical Communications, 2001, , 349-350.	4.1	170
65	Synthesis and Characterization of Ordered, Very Large Pore MSU-H Silicas Assembled from Water-Soluble Silicates. Journal of Physical Chemistry B, 2001, 105, 7663-7670.	2.6	147
66	Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues. Chemistry of Materials, 2001, 13, 1726-1731.	6.7	78
67	Synthesis of Ordered and Disordered Silicas with Uniform Pores on the Border between Micropore and Mesopore Regions Using Short Double-Chain Surfactants. Journal of the American Chemical Society, 2001, 123, 1650-1657.	13.7	119
68	Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications. Materials Research Society Symposia Proceedings, 2001, 707, 551.	0.1	1
69	Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
70	Comprehensive characterization of highly ordered MCM-41 silicas using nitrogen adsorption, thermogravimetry, X-ray diffraction and transmission electron microscopy. Microporous and Mesoporous Materials, 2001, 48, 127-134.	4.4	74
71	Nitrogen Adsorption Study of MCM-41 Molecular Sieves Synthesized Using Hydrothermal Restructuring. Adsorption, 2000, 6, 47-51.	3.0	49
72	Accurate Method for Calculating Mesopore Size Distributions from Argon Adsorption Data at 87 K Developed Using Model MCM-41 Materials. Chemistry of Materials, 2000, 12, 222-230.	6.7	162

#	Article	IF	CITATIONS
73	Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000, 12, 1961-1968.	6.7	1,280
74	On the applicability of the Horwath-Kawazoe method for pore size analysis of MCM-41 and related mesoporous materials. Studies in Surface Science and Catalysis, 2000, 128, 225-234.	1.5	7
75	Block-Copolymer-Templated Ordered Mesoporous Silica:Â Array of Uniform Mesopores or Mesoporeâ^Micropore Network?. Journal of Physical Chemistry B, 2000, 104, 11465-11471.	2.6	631
76	Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates. Journal of Physical Chemistry B, 2000, 104, 7960-7968.	2.6	333
77	Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. Journal of the American Chemical Society, 2000, 122, 10712-10713.	13.7	2,331
78	THERMODYNAMIC APPROACH TO THE SURFACE AREA AND PORE SIZE ANALYSIS OF ACTIVE CARBONS. , 2000, , \cdot		0
79	Relations between Pore Structure Parameters and Their Implications for Characterization of MCM-41 Using Gas Adsorption and X-ray Diffraction. Chemistry of Materials, 1999, 11, 492-500.	6.7	194
80	Determination of the Specific Surface Area and the Pore Size of Microporous Carbons from Adsorption Potential Distributions. Langmuir, 1999, 15, 1442-1448.	3.5	86
81	New Approach to Evaluate Pore Size Distributions and Surface Areas for Hydrophobic Mesoporous Solids. Journal of Physical Chemistry B, 1999, 103, 10670-10678.	2.6	135
82	Expanding the Pore Size of MCM-41 Silicas:  Use of Amines as Expanders in Direct Synthesis and Postsynthesis Procedures. Journal of Physical Chemistry B, 1999, 103, 3651-3658.	2.6	234
83	Nitrogen Adsorption Study of Surface Properties of Graphitized Carbon Blacks. Langmuir, 1999, 15, 1435-1441.	3.5	140
84	Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas. Langmuir, 1999, 15, 5410-5413.	3.5	512
85	A Unified Interpretation of High-Temperature Pore Size Expansion Processes in MCM-41 Mesoporous Silicas. Journal of Physical Chemistry B, 1999, 103, 4590-4598.	2.6	110
86	New Approaches to Pore Size Engineering of Mesoporous Silicates. Advanced Materials, 1998, 10, 1376-1379.	21.0	185
87	Critical discussion of simple adsorption methods used to evaluate the micropore size distribution. Adsorption, 1997, 3, 209-219.	3.0	57