J-F Shao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5569863/j-f-shao-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

357
papers

7,655
citations

44
h-index

9-index

373
ext. papers

9,096
ext. citations

4.1
avg, IF

L-index

#	Paper	IF	Citations
357	Prediction of TBM cutterhead speed and penetration rate for high-efficiency excavation of hard rock tunnel using CNN-LSTM model with construction big data. <i>Arabian Journal of Geosciences</i> , 2022 , 15, 1	1.8	1
356	A constitutive model for anisotropic clay-rich rocks considering micro-structural composition. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2022 , 151, 105029	6	2
355	Numerical modelling the influence of water content on the mechanical behaviour of concrete under high confining pressures. <i>Mechanics Research Communications</i> , 2022 , 119, 103819	2.2	1
354	A bipotential-based macroscopic fatigue criterion of porous materials with a pressure-sensitive and non-associated plastic solid matrix and comparison with numerical simulation. <i>Mechanics of Materials</i> , 2022 , 165, 104161	3.3	О
353	Application of Continuum Damage Mechanics in Hydraulic Fracturing Simulations 2022, 751-768		
352	Micromechanics-Based Models for Induced Damage in Rock-Like Materials 2022 , 725-749		
351	Numerical Analysis of Damage by Phase-Field Method 2022 , 701-724		O
350	A new incremental variational micro-mechanical model for porous rocks with a pressure-dependent and compressionEension asymmetric plastic solid matrix. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2022 , 153, 105059	6	О
349	Contribution of atomistic study to better understand water saturation effect on mechanical behavior of clayey rocks in triaxial compression. <i>Computers and Geotechnics</i> , 2022 , 146, 104738	4.4	O
348	Numerical study of time-dependent deformation and cracking in brittle rocks with phase-field method and application to slope instability analysis. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2022 , 155, 105144	6	0
347	Molecular dynamics study on creep behavior of montmorillonite. <i>IOP Conference Series: Earth and Environmental Science</i> , 2021 , 861, 042099	0.3	
346	Experimental investigations on the tensile behaviour of granite after heating and water-cooling treatment. <i>Bulletin of Engineering Geology and the Environment</i> , 2021 , 80, 5909-5920	4	1
345	A micro-mechanical constitutive model for heterogeneous rocks with non-associated plastic matrix as implicit standard materials. <i>Computers and Geotechnics</i> , 2021 , 133, 104026	4.4	2
344	Numerical study of shrinkage and heating induced cracking in concrete materials and influence of inclusion stiffness with Peridynamics method. <i>Computers and Geotechnics</i> , 2021 , 133, 103998	4.4	2
343	A variational-based homogenization model for plastic shakedown analysis of porous materials with a large range of porosity. <i>International Journal of Mechanical Sciences</i> , 2021 , 199, 106429	5.5	3
342	The Effect of Pre-heating Treatment and Water Dement Ratio on the Shearing Behavior and Permeability of Granite Dement Interface Samples. <i>Rock Mechanics and Rock Engineering</i> , 2021 , 54, 563	9 ^{5.7}	0
341	Shear strength of interface between high-performance concrete and claystone in the context of a French radioactive waste repository project. <i>Geotechnique</i> , 2021 , 71, 534-547	3.4	2

(2021-2021)

340	Effect of water chemical corrosion on mechanical properties and failure modes of pre-fissured sandstone under uniaxial compression. <i>Acta Geotechnica</i> , 2021 , 16, 1083-1099	4.9	5
339	A Heuristic Elastoplastic Damage Constitutive Modeling Method for Geomaterials: From Strength Criterion to Analytical Full-Spectrum StressBtrain Curves. <i>International Journal of Geomechanics</i> , 2021 , 21, 04020255	3.1	2
338	A phase-field modeling method for the mixed-mode fracture of brittle materials based on spectral decomposition. <i>Engineering Fracture Mechanics</i> , 2021 , 242, 107473	4.2	3
337	Modeling of damage and cracking in heterogeneous rock-like materials by phase-field method. <i>Mechanics Research Communications</i> , 2021 , 114, 103612	2.2	1
336	Numerical Analysis of Damage by Phase-Field Method 2021 , 1-24		
335	Strength Behaviour of a High-Performance Concrete Under Drying. RILEM Bookseries, 2021, 155-164	0.5	
334	Experimental study of concrete creep under thermal-mechanical-hydric conditions. <i>Materials and Structures/Materiaux Et Constructions</i> , 2021 , 54, 1	3.4	0
333	Insight of molecular simulation to better assess deformation and failure of clay-rich rocks in compression and extension. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2021 , 138, 104589	6	3
332	A multi-scale model of plasticity and damage for rock-like materials with pores and inclusions. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2021 , 138, 104579	6	3
331	Numerical study of thermo-hydro-mechanical responses of in situ heating test with phase-field model. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2021 , 138, 104542	6	8
330	Modification of poroelastic properties in granite by heatingBooling treatment. <i>Acta Geotechnica</i> , 2021 , 16, 2165-2173	4.9	2
329	Influences of structural anisotropy and heterogeneity on three-dimensional strain fields and cracking patterns of a clay-rich rock. <i>Acta Geotechnica</i> , 2021 , 16, 2175-2187	4.9	2
328	Analysis of Local Creep Strain Field and Cracking Process in Claystone by X-Ray Micro-Tomography and Digital Volume Correlation. <i>Rock Mechanics and Rock Engineering</i> , 2021 , 54, 1937-1952	5.7	3
327	Experimental study of gas permeability evolution in tight sandstone with damage and cracking along various stress loading paths. <i>Bulletin of Engineering Geology and the Environment</i> , 2021 , 80, 7847	4	1
326	Numerical modeling of deformation and damage around underground excavation by phase-field method with hydromechanical coupling. <i>Computers and Geotechnics</i> , 2021 , 138, 104369	4.4	2
325	Friction-damage coupled models and macroscopic strength criteria for ice-saturated frozen silt with crack asperity variation by a micromechanical approach. <i>Engineering Geology</i> , 2021 , 106405	6	1
324	An improved hydromechanical model for particle flow simulation of fractures in fluid-saturated rocks. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2021 , 147, 104870	6	3
323	A novel micromechanics-enhanced phase-field model for frictional damage and fracture of quasi-brittle geomaterials. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2021 , 385, 114060	5.7	3

322	Estimation of constituent properties of concrete materials with an artificial neural network based method. <i>Cement and Concrete Research</i> , 2021 , 150, 106614	10.3	2
321	Investigation of Parameter Influence on Damage Evolution via PD-FEM Coupling Method. <i>Lecture Notes in Civil Engineering</i> , 2021 , 672-679	0.3	
320	A Semi-empirical Failure Criterion for Brittle Rocks. <i>Rock Mechanics and Rock Engineering</i> , 2020 , 53, 42	71 <u>5</u> 4 7 277	7 1
319	Foliation Effects on Mechanical and Failure Characteristics of Slate in 3D Space Under Brazilian Test Conditions. <i>Rock Mechanics and Rock Engineering</i> , 2020 , 53, 3919-3936	5.7	5
318	A micro-mechanics-based elastoplastic friction-damage model for brittle rocks and its application in deformation analysis of the left bank slope of Jinping I hydropower station. <i>Acta Geotechnica</i> , 2020 , 15, 3443-3460	4.9	5
317	A three-scale micro-mechanical model for elasticplastic damage modeling of shale rocks. <i>Acta Geotechnica</i> , 2020 , 15, 3525-3543	4.9	2
316	A method to experimentally investigate injection-induced activation of fractures. <i>Journal of Rock Mechanics and Geotechnical Engineering</i> , 2020 , 12, 1326-1332	5.3	1
315	Experimental and numerical investigation of microstructure effect on the mechanical behavior and failure process of brittle rocks. <i>Computers and Geotechnics</i> , 2020 , 125, 103639	4.4	2
314	A novel FFT-based phase field model for damage and cracking behavior of heterogeneous materials. <i>International Journal of Plasticity</i> , 2020 , 133, 102786	7.6	22
313	An extended finite element solution for hydraulic fracturing with thermo-hydro-elasticplastic coupling. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2020 , 364, 112967	5.7	21
312	Deformation and mechanical properties of rock: effect of hydromechanical coupling under unloading conditions. <i>Bulletin of Engineering Geology and the Environment</i> , 2020 , 79, 5517-5534	4	3
311	A multiscale elastoplastic constitutive model for geomaterials with a porous matrix-inclusion microstructure. <i>Computers and Geotechnics</i> , 2020 , 126, 103683	4.4	2
310	An adaptive coupling method of state-based peridynamics theory and finite element method for modeling progressive failure process in cohesive materials. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2020 , 370, 113248	5.7	8
309	Numerical homogenization of elastic properties and plastic yield stress of rock-like materials with voids and inclusions at same scale. <i>European Journal of Mechanics, A/Solids</i> , 2020 , 81, 103958	3.7	8
308	Shakedown analysis of a hollow sphere by interior-point method with non-linear optimization. <i>International Journal of Mechanical Sciences</i> , 2020 , 175, 105515	5.5	6
307	A micromechanics-based enhanced plastic damage model including localization analysis for heterogeneous geomaterials. <i>Computers and Geotechnics</i> , 2020 , 122, 103512	4.4	7
306	A homogenized macroscopic criterion for shakedown analysis of ductile porous media with kinematical hardening matrix. <i>European Journal of Mechanics, A/Solids</i> , 2020 , 82, 104015	3.7	6
305	Application of Continuum Damage Mechanics in Hydraulic Fracturing Simulations 2020 , 1-19		

(2019-2020)

304	Micromechanical modelling of short- and long-term behavior of saturated quasi-brittle rocks. <i>Mechanics of Materials</i> , 2020 , 142, 103298	3.3	2	
303	A micromechanical-based elasto-viscoplastic model for the Callovo-Oxfordian argillite: Algorithms, validations, and applications. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2020 , 44, 183-207	4	3	
302	A new bond model in peridynamics theory for progressive failure in cohesive brittle materials. <i>Engineering Fracture Mechanics</i> , 2020 , 223, 106767	4.2	23	
301	Digital Volume Correlation Applied to X-ray Micro-Tomography Images in Uniaxial Creep Tests on Anisotropic Clayey Rock. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 4898	2.6	5	
300	A microstructure-based constitutive model for cement paste with chemical leaching effect. <i>Mechanics of Materials</i> , 2020 , 150, 103571	3.3	5	
299	Prediction of plastic yield surface for porous materials by a machine learning approach. <i>Materials Today Communications</i> , 2020 , 25, 101477	2.5	5	
298	Modeling of hydraulic fracturing in viscoelastic formations with the fractional Maxwell model. <i>Computers and Geotechnics</i> , 2020 , 126, 103723	4.4	5	
297	Influence of inclusion rigidity on shrinkage induced micro-cracking of cementitious materials. <i>Cement and Concrete Composites</i> , 2020 , 114, 103773	8.6	2	
296	Plastic modeling of porous rocks in drained and undrained conditions. <i>Computers and Geotechnics</i> , 2020 , 117, 103277	4.4	3	
295	Evaluation and improvement of macroscopic yield criteria of porous media having a Drucker-Prager matrix. <i>International Journal of Plasticity</i> , 2020 , 126, 102609	7.6	17	
294	Incorporation of tension-compression asymmetry into plastic damage phase-field modeling of quasi brittle geomaterials. <i>International Journal of Plasticity</i> , 2020 , 124, 71-95	7.6	23	
293	Influence of cooling rate on thermal degradation of physical and mechanical properties of granite. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2020 , 129, 104285	6	15	
292	A new experimental method for tensile property study of quartz sandstone under confining pressure. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2019 , 123, 104091	6	20	
291	Study of deformation and failure in an anisotropic rock with a three-dimensional discrete element model. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2019 , 120, 17-28	6	13	
29 0	A new discrete method for modeling hydraulic fracturing in cohesive porous materials. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 180, 257-267	4.4	16	
289	Time-dependent behaviour of an oil-well cement paste subjected to leaching under temperature. <i>European Journal of Environmental and Civil Engineering</i> , 2019 , 1-15	1.5		
288	An upscaled model for elastoplastic behavior of the Callovo-Oxfordian argillite. <i>Computers and Geotechnics</i> , 2019 , 112, 81-92	4.4	2	
287	Mechanical Behavior of Claystone in Lateral Decompression Test and Thermal Effect. <i>Rock Mechanics and Rock Engineering</i> , 2019 , 52, 321-334	5.7	16	

286	Influence of pore pressure on plastic deformation and strength of limestone under compressive stress. <i>Acta Geotechnica</i> , 2019 , 14, 535-545	4.9	7
285	Bayesian model selection for sand with generalization ability evaluation. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2019 , 43, 2305-2327	4	31
284	Homogenization of rock-like materials with plastic matrix based on an incremental variational principle. <i>International Journal of Plasticity</i> , 2019 , 123, 145-164	7.6	14
283	Risk factors for the development of avascular necrosis after femoral neck fractures in children: a review of 239 cases. <i>Bone and Joint Journal</i> , 2019 , 101-B, 1160-1167	5.6	9
282	Effect of plastic deformation on hydraulic fracturing with extended element method. <i>Acta Geotechnica</i> , 2019 , 14, 2083-2101	4.9	9
281	A single-objective EPR based model for creep index of soft clays considering L2 regularization. <i>Engineering Geology</i> , 2019 , 248, 242-255	6	38
280	Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach. <i>Computers and Geotechnics</i> , 2019 , 105, 51-68	4.4	52
279	Evolution of bulk compressibility and permeability of granite due to thermal cracking. <i>Geotechnique</i> , 2019 , 69, 906-916	3.4	4
278	Effects of confining pressure and loading path on deformation and strength of cohesive granular materials: a three-dimensional DEM analysis. <i>Acta Geotechnica</i> , 2019 , 14, 443-460	4.9	18
277	Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2018 , 103, 68-76	6	37
276	A Micromechanics-Based Elastoplastic Damage Model for Rocks with a BrittleDuctile Transition in Mechanical Response. <i>Rock Mechanics and Rock Engineering</i> , 2018 , 51, 1729-1737	5.7	15
275	Three-dimensional Reconstruction of Block Shape Irregularity and its Effects on Block Impacts Using an Energy-Based Approach. <i>Rock Mechanics and Rock Engineering</i> , 2018 , 51, 1173-1191	5.7	11
274	Effects of inclusions and pores on plastic and viscoplastic deformation of rock-like materials. <i>International Journal of Plasticity</i> , 2018 , 108, 107-124	7.6	22
273	Elastoplastic modelling the creep behaviour of cataclastic rock under multi-stage deviatoric stress. <i>European Journal of Environmental and Civil Engineering</i> , 2018 , 22, 650-665	1.5	2
272	A damage model of mechanical behavior of porous materials: Application to sandstone. <i>International Journal of Damage Mechanics</i> , 2018 , 27, 1325-1351	3	17
271	A micro-mechanics based plastic damage model for quasi-brittle materials under a large range of compressive stress. <i>International Journal of Plasticity</i> , 2018 , 100, 156-176	7.6	45
270	Numerical modeling of the elastoplastic damage behavior of dry and saturated concrete targets subjected to rigid projectile penetration. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2018 , 42, 312-338	4	2
269	Numerical modelling of long-term stability of the rock joint. <i>European Journal of Environmental and Civil Engineering</i> , 2018 , 22, s415-s433	1.5	2

268	An approximate strength criterion of porous materials with a pressure sensitive and tension-compression asymmetry matrix. <i>International Journal of Engineering Science</i> , 2018 , 132, 1-15	5.7	12
267	Characterization of the mechanical properties of a claystone by nano-indentation and homogenization. <i>Acta Geotechnica</i> , 2018 , 13, 1395-1404	4.9	14
266	Influences of micro-pores and meso-pores on elastic and plastic properties of porous materials. <i>European Journal of Mechanics, A/Solids</i> , 2018 , 72, 407-423	3.7	21
265	Lateral Decompression Behaviors of a Hard Claystone in Excavation-Damaged Zone of Galleries. <i>Springer Series in Geomechanics and Geoengineering</i> , 2018 , 1702-1706	0.1	
264	Laboratory Investigation on Physical and Mechanical Properties of Granite After Heating and Water-Cooling Treatment. <i>Rock Mechanics and Rock Engineering</i> , 2018 , 51, 677-694	5.7	109
263	Numerical study of hydraulic fracture propagation accounting for rock anisotropy. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 160, 422-432	4.4	51
262	Multi-step triaxial compressive creep behaviour and induced gas permeability change of clay-rich rock. <i>Geotechnique</i> , 2018 , 68, 281-289	3.4	20
261	Creep Strain and Permeability Evolution in Cracked Granite Subjected to Triaxial Stress and Reactive Flow. <i>Geofluids</i> , 2018 , 2018, 1-10	1.5	2
260	Nuclear Smad6 promotes gliomagenesis by negatively regulating PIAS3-mediated STAT3 inhibition. <i>Nature Communications</i> , 2018 , 9, 2504	17.4	30
259	Analysis of localized cracking in quasi-brittle materials with a micro-mechanics based friction-damage approach. <i>Journal of the Mechanics and Physics of Solids</i> , 2018 , 119, 163-187	5	20
258	Influences of chemical leaching on elastic and plastic properties of cement-based materials. <i>European Journal of Environmental and Civil Engineering</i> , 2017 , 21, 696-711	1.5	1
257	About the interest of using gas to evaluate permeability of damaged granite. <i>European Journal of Environmental and Civil Engineering</i> , 2017 , 21, 238-247	1.5	4
256	Some micromechanical models of elastoplastic behaviors of porous geomaterials. <i>Journal of Rock Mechanics and Geotechnical Engineering</i> , 2017 , 9, 1-17	5.3	17
255	Macroscopic criteria for Green type porous materials with spheroidal voids: application to double porous materials. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2017 , 41, 1453-1473	4	5
254	A Micro-Mechanical Analysis of Induced Anisotropic Damage in Initially Anisotropic Materials. <i>Springer Series in Geomechanics and Geoengineering</i> , 2017 , 415-420	0.1	
253	A coupled elastoplastic and visco-plastic damage model for hard clay and its application for the underground gallery excavation. <i>Underground Space (China)</i> , 2017 , 2, 60-72	3.7	4
252	A micro-mechanics based viscoplastic model for clayey rocks. <i>Computers and Geotechnics</i> , 2017 , 89, 92-1	0 ₁ 2 ₄	10
251	A numerical study of mechanical behavior of a cement paste under mechanical loading and chemical leaching. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2017 , 41, 1848-1869	4	4

250	A micro-mechanics-based elasticBlastic model for porous rocks: applications to sandstone and chalk. <i>Acta Geotechnica</i> , 2017 , 13, 329	4.9	2
249	Bridging meso- and microscopic anisotropic unilateral damage formulations for microcracked solids. <i>Comptes Rendus - Mecanique</i> , 2017 , 345, 281-292	2.1	4
248	Numerical study of excavation induced fractures using an extended rigid block spring method. <i>Computers and Geotechnics</i> , 2017 , 85, 368-383	4.4	23
247	Micromechanics of rock damage: Advances in the quasi-brittle field. <i>Journal of Rock Mechanics and Geotechnical Engineering</i> , 2017 , 9, 29-40	5.3	28
246	Retraction Note to: Metabolic syndrome factors and risk of postoperative depression in high-grade glioma patients in a 1.5-year prospective study. <i>Medical Oncology</i> , 2017 , 34, 181	3.7	
245	Retraction Note to: Relationship between inflammatory cytokines and risk of depression, and effect of depression on the prognosis of high grade glioma patients. <i>Journal of Neuro-Oncology</i> , 2017 , 134, 475	4.8	O
244	Approximate macroscopic yield criteria for Drucker-Prager type solids with spheroidal voids. <i>International Journal of Plasticity</i> , 2017 , 99, 221-247	7.6	28
243	Experimental study and modeling of hydromechanical behavior of concrete fracture. <i>Water Science and Engineering</i> , 2017 , 10, 97-106	4	7
242	Stress-induced permeability evolutions and erosion damage of porous rocks 2017 , 63-92		1
241	Application of continuum damage mechanics in hydraulic fracturing simulations 2017 , 197-212		3
240	Multiscale modeling approaches and micromechanics of porous rocks 2017 , 215-232		1
239	Anisotropic poroplasticity in saturated porous media, effect of confining pressure, and elevated temperature 2017 , 27-46		1
238	Parametric study of thermo-hydro-mechanical response of claystone with consideration of steel corrosion. <i>Journal of Rock Mechanics and Geotechnical Engineering</i> , 2017 , 9, 449-462	5.3	1
237	Triaxial Creep Induced Gas Permeability Change and Elastic Modulus Variation in Callovo-Oxfordian Argillite 2017 ,		1
236	Strength Behavior, Creep Failure and Permeability Change of a Tight Marble Under Triaxial Compression. <i>Rock Mechanics and Rock Engineering</i> , 2017 , 50, 529-541	5.7	30
235	Water Saturation Induced Strength Degradation of Callovo-Oxfordian Claystone. <i>Springer Series in Geomechanics and Geoengineering</i> , 2017 , 11-17	0.1	3
234	Laboratory Investigations of the Hydro-Mechanical Coupling Behaviour of Sandstone in CO2 Storage in Aquifers. <i>Rock Mechanics and Rock Engineering</i> , 2016 , 49, 417-426	5.7	17
233	Moisture effects on damage and failure of Bure claystone under compression. <i>Geotechnique Letters</i> , 2016 , 6, 182-186	1.7	18

(2016-2016)

232	Time-Dependent Behavior of Cataclastic Rocks in a Multi-Loading Triaxial Creep Test. <i>Rock Mechanics and Rock Engineering</i> , 2016 , 49, 3793-3803	5.7	30
231	A micromechanical model for porous materials with a reinforced matrix. <i>Mechanics Research Communications</i> , 2016 , 72, 81-86	2.2	3
230	Gas Permeability Evolution with Deformation and Cracking Process in a White Marble Under Compression. <i>Transport in Porous Media</i> , 2016 , 111, 441-455	3.1	19
229	Effects of Acid Solution on the Mechanical Behavior of Sandstone. <i>Journal of Materials in Civil Engineering</i> , 2016 , 28, 04015089	3	16
228	A unified micromechanics-based damage model for instantaneous and time-dependent behaviors of brittle rocks. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2016 , 84, 187-196	6	34
227	A discrete approach for modeling damage and failure in anisotropic cohesive brittle materials. <i>Engineering Fracture Mechanics</i> , 2016 , 155, 102-118	4.2	31
226	Numerical study of a concrete target under the penetration of rigid projectile using an elastoplastic damage model. <i>Engineering Structures</i> , 2016 , 111, 525-537	4.7	9
225	A numerical study of effective mechanical behaviors of rock like materials based on Fast Fourier Transform. <i>Mechanics of Materials</i> , 2016 , 92, 275-288	3.3	8
224	The 100 Top-Cited Articles Published in Emergency Medicine Journals: A Bibliometric Analysis. Hong Kong Journal of Emergency Medicine, 2016 , 23, 329-339	0.4	5
223	A micromechanics-based model for concrete materials subjected to carbonation. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2016 , 40, 1203-1218	4	5
222	Gas permeability evolution mechanism during creep of a low permeable claystone. <i>Applied Clay Science</i> , 2016 , 129, 47-53	5.2	22
221	Analysis of 4931 renal biopsy data in central China from 1994 to 2014. Renal Failure, 2016, 38, 1021-30	2.9	22
220	Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. <i>Molecular Medicine Reports</i> , 2016 , 13, 3763-70	2.9	32
219	An incremental micro-macro model for porous geomaterials with double porosity and inclusion. <i>International Journal of Plasticity</i> , 2016 , 83, 37-54	7.6	37
218	An elastic plastic model for porous rocks with two populations of voids. <i>Computers and Geotechnics</i> , 2016 , 76, 194-200	4.4	8
217	Damage and plastic friction in initially anisotropic quasi brittle materials. <i>International Journal of Plasticity</i> , 2016 , 82, 260-282	7.6	31
216	Analytical and numerical analysis of frictional damage in quasi brittle materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2016 , 92, 137-163	5	49
215	Experimental Investigation on Mechanical Behavior and Permeability Evolution of a Porous Limestone Under Compression. <i>Rock Mechanics and Rock Engineering</i> , 2016 , 49, 3425-3435	5.7	29

Numerical analysis of concrete under a wide range of stress and with different saturation

condition. Materials and Structures/Materiaux Et Constructions, 2015, 48, 295-306

3.4

197

(2015-2015)

196	An Experimental Study and Constitutive Modeling of Saturated Porous Rocks. <i>Rock Mechanics and Rock Engineering</i> , 2015 , 48, 223-234	5.7	26	
195	A new macroscopic criterion of porous materials with a Mises-Schleicher compressible matrix. <i>European Journal of Mechanics, A/Solids</i> , 2015 , 49, 531-538	3.7	19	
194	Damage and Plastic Deformation Modeling of Beishan Granite Under Compressive Stress Conditions. <i>Rock Mechanics and Rock Engineering</i> , 2015 , 48, 1623-1633	5.7	52	
193	A discrete viscoplastic damage model for time-dependent behaviour of quasi-brittle rocks. <i>International Journal of Damage Mechanics</i> , 2015 , 24, 21-40	3	16	
192	Evolution of mechanical behaviour of mortar with re-saturation after drying. <i>Materials and Structures/Materiaux Et Constructions</i> , 2015 , 48, 3343-3355	3.4	4	
191	Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine. <i>Acta Geotechnica</i> , 2015 , 10, 651-663	4.9	41	
190	Incremental variational approach for time dependent deformation in clayey rock. <i>International Journal of Plasticity</i> , 2015 , 64, 88-103	7.6	11	
189	Multiscale Study of the Nonlinear Behavior of Heterogeneous Clayey Rocks Based on the FFT Method. <i>Rock Mechanics and Rock Engineering</i> , 2015 , 48, 417-426	5.7	3	
188	Experimental investigation and constitutive modelling of creep-damage behaviours in monzogranite. <i>European Journal of Environmental and Civil Engineering</i> , 2015 , 19, s54-s69	1.5	3	
187	Change in the permeability of clastic rock during multi-loading triaxial compressive creep tests. <i>Geotechnique Letters</i> , 2015 , 5, 167-172	1.7	14	
186	A self-consistent approach for microfiacro modeling of elasticplastic deformation in polycrystalline geomaterials. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2015 , 39, 1735-1752	4	3	
185	Coverage of Journals from Mainland China in the Field of Emergency Medicine by Major International Biomedicine Databases. <i>Hong Kong Journal of Emergency Medicine</i> , 2015 , 22, 41-45	0.4		
184	In vivo Radiosensitization of Human Glioma U87 Cells Induced by Upregulated Expression of DUSP-2 after Treatment with Curcumin. <i>Current Signal Transduction Therapy</i> , 2015 , 10, 119-125	0.8	6	
183	Modelling of hydro-mechanical coupling and transport in densely fractured rock mass. <i>European Journal of Environmental and Civil Engineering</i> , 2015 , 19, 521-538	1.5	7	
182	Influence of time-dependence on failure of echelon rock joints through a novel DEM model. <i>European Journal of Environmental and Civil Engineering</i> , 2015 , 19, s108-s118	1.5	4	
181	Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project. Water Science and Engineering, 2015 , 8, 55-62	4	29	
180	Micromechanical modeling of the elasto-viscoplastic behavior of granite. <i>Comptes Rendus - Mecanique</i> , 2015 , 343, 121-132	2.1	3	
179	Gas permeability evolution of clayey rocks in process of compressive creep test. <i>Materials Letters</i> , 2015 , 139, 422-425	3.3	28	

178	Numerical Modeling of Failure Process in Cohesive Geomaterials. <i>Springer Series in Geomechanics and Geoengineering</i> , 2015 , 39-45	0.1	
177	An Experimental and Numerical Investigation of the Mechanical Behaviour of a Concrete and of its Permeability Under Deviatoric Loading. <i>Transport in Porous Media</i> , 2014 , 102, 427-454	3.1	3
176	An extreme learning machine approach for slope stability evaluation and prediction. <i>Natural Hazards</i> , 2014 , 73, 787-804	3	47
175	Comprehensive Stability Evaluation of Rock Slope Using the Cloud Model-Based Approach. <i>Rock Mechanics and Rock Engineering</i> , 2014 , 47, 2239-2252	5.7	41
174	Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches. <i>Landslides</i> , 2014 , 11, 889-896	6.6	65
173	Multiscale modeling of cohesive geomaterials with a polycrystalline approach. <i>Mechanics of Materials</i> , 2014 , 69, 132-145	3.3	11
172	Influences of temperature and water content on mechanical property of argillite. <i>European Journal of Environmental and Civil Engineering</i> , 2014 , 18, 173-189	1.5	29
171	A numerical analysis of interface damage effect on mechanical properties of composite materials. <i>Mechanics Research Communications</i> , 2014 , 62, 18-24	2.2	6
170	Study on the hydromechanical behavior of single fracture under normal stresses. <i>KSCE Journal of Civil Engineering</i> , 2014 , 18, 1641-1649	1.9	9
169	A randomized controlled trial of standard versus intensified tuberculosis diagnostics on treatment decisions by physicians in Northern Tanzania. <i>BMC Infectious Diseases</i> , 2014 , 14, 89	4	4
168	Multi-scale modeling of time-dependent behavior of claystones with a viscoplastic compressible porous matrix. <i>Mechanics of Materials</i> , 2014 , 79, 25-34	3.3	11
167	Modeling of viscoplastic deformation in geomaterials with a polycrystalline approach. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2014 , 72, 182-190	6	3
166	The gas permeability properties of low-permeability rock in the process of triaxial compression test. <i>Materials Letters</i> , 2014 , 116, 386-388	3.3	37
165	Prediction of elastic compressibility of rock material with soft computing techniques. <i>Applied Soft Computing Journal</i> , 2014 , 22, 118-125	7.5	13
164	Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2014 , 70, 185-191	6	119
163	HIV-1 pol diversity among female bar and hotel workers in Northern Tanzania. <i>PLoS ONE</i> , 2014 , 9, e102	258	4
162	Metabolic syndrome factors and risk of postoperative depression in high-grade glioma patients in a 1.5-year prospective study. <i>Medical Oncology</i> , 2014 , 31, 234	3.7	3
161	Numerical study of the interaction between adjacent galleries in a high-level radioactive waste repository. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2014 , 71, 405-417	6	1

(2013-2014)

160	Modeling of Short- and Long-Term Chemomechanical Coupling Behavior of Cement-Based Materials. <i>Journal of Engineering Mechanics - ASCE</i> , 2014 , 140, 206-218	2.4	5
159	An experimental study of crack growth in claystones. <i>European Journal of Environmental and Civil Engineering</i> , 2014 , 18, 307-319	1.5	10
158	Experimental Researches on Hydro-Mechanical Properties of Altered Rock Under Confining Pressures. <i>Rock Mechanics and Rock Engineering</i> , 2014 , 47, 485-493	5.7	44
157	Influences of Mineralogy and Water Content on the Mechanical Properties of Argillite. <i>Rock Mechanics and Rock Engineering</i> , 2014 , 47, 157-166	5.7	36
156	Experimental study of poromechanical behavior of saturated claystone under triaxial compression. <i>Acta Geotechnica</i> , 2014 , 9, 207-214	4.9	36
155	Stability analysis of a large landslide in hydropower engineering. <i>Natural Hazards</i> , 2014 , 70, 527-548	3	9
154	An anisotropic damageplasticity model for saturated quasi-brittle materials. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2013 , 37, 1691-1710	4	8
153	Micromechanics approach to poroelastic behavior of a jointed rock. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2013 , 37, 111-129	4	12
152	Micromechanical modeling of mortar as a matrix-inclusion composite with drying effects. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2013 , 37, 1034-1047	4	6
151	The Current State of Open Access in Journals Sponsored by the China Association for Science and Technology. <i>Journal of Scholarly Publishing</i> , 2013 , 44, 373-383	0.3	1
150	Elastoplastic Behavior of Ductile Porous Rocks 2013 , 187-210		1
149	Multiscale Modeling of Anisotropic Unilateral Damage in Quasi-brittle Geomaterials: Formulation and Numerical Applications 2013 , 347-376		
148	An energy-based analysis for aggregate size effect on mechanical strength of cement-based materials. <i>Engineering Fracture Mechanics</i> , 2013 , 102, 207-217	4.2	1
147	A non-uniform transformation field analysis for frictional cohesive geomaterials. <i>European Journal of Mechanics, A/Solids</i> , 2013 , 42, 97-111	3.7	9
146	Influence of alkali silica reaction (ASR) on mechanical properties of mortar. <i>Construction and Building Materials</i> , 2013 , 47, 165-174	6.7	27
145	Modeling of inherent anisotropic behavior of partially saturated clayey rocks. <i>Computers and Geotechnics</i> , 2013 , 48, 29-40	4.4	18
144	An isotropic unilateral damage model coupled with frictional sliding for quasi-brittle materials. <i>Mechanics Research Communications</i> , 2013 , 53, 31-35	2.2	11
143	A closed-form three scale model for ductile rocks with a plastically compressible porous matrix. <i>Mechanics of Materials</i> , 2013 , 59, 73-86	3.3	59

142	Elastoplastic damage modeling the mechanical behavior of rock-like materials considering confining pressure dependency. <i>Mechanics Research Communications</i> , 2013 , 53, 1-8	2.2	22
141	An Experimental Investigation and an Elastoplastic Constitutive Model for a Porous Rock. <i>Rock Mechanics and Rock Engineering</i> , 2013 , 46, 1499-1511	5.7	43
140	Compressive strength of cement-based composites: Roles of aggregate diameter and water saturation degree. <i>Cement and Concrete Composites</i> , 2013 , 37, 249-258	8.6	23
139	A Simplified Model for Clayey Rocks Having a Plastic Porous Matrix. <i>Springer Series in Geomechanics and Geoengineering</i> , 2013 , 283-287	0.1	1
138	A Micromechanical Model for Time Dependent Behavior Related to Subcritical Damage in Quasi Brittle Rocks. <i>Springer Series in Geomechanics and Geoengineering</i> , 2013 , 323-326	0.1	
137	Prediction of rock burst classification using the technique of cloud models with attribution weight. <i>Natural Hazards</i> , 2013 , 68, 549-568	3	70
136	Comprehensive assessment and global stabilisation measures of a large landslide in hydropower engineering. <i>European Journal of Environmental and Civil Engineering</i> , 2013 , 17, 154-175	1.5	5
135	Estimation of Elasticity of Porous Rock Based on Mineral Composition and Microstructure. <i>Advances in Materials Science and Engineering</i> , 2013 , 2013, 1-10	1.5	15
134	A micromechanical analysis of time-dependent behavior based on subcritical damage in claystones. <i>International Journal of Damage Mechanics</i> , 2013 , 22, 773-790	3	12
133	Frequent intra-subtype recombination among HIV-1 circulating in Tanzania. <i>PLoS ONE</i> , 2013 , 8, e71131	3.7	11
132	Factors associated with problem drinking among women employed in food and recreational facilities in northern Tanzania. <i>PLoS ONE</i> , 2013 , 8, e84447	3.7	10
131	Micromechanical Poroplasiticty Damage Formulations for Saturated Microcracked Rocks. <i>Springer Series in Geomechanics and Geoengineering</i> , 2013 , 387-390	0.1	1
130	Induced anisotropic damage and plasticity in initially anisotropic sedimentary rocks. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2012 , 51, 13-23	6	34
129	Micromechanical analysis of damage in saturated quasi brittle materials. <i>International Journal of Solids and Structures</i> , 2012 , 49, 919-928	3.1	32
128	3D numerical modelling thermo-hydromechanical behaviour of underground storages in clay rock. <i>Tunnelling and Underground Space Technology</i> , 2012 , 30, 93-109	5.7	9
127	A micromechanical modeling of ductile behavior of a porous chalk: Formulation, identification, and validation. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2012 , 36, 1245-1	263	12
126	Experimental investigation and poroplastic modelling of saturated porous geomaterials. <i>International Journal of Plasticity</i> , 2012 , 39, 27-45	7.6	41
125	A microfinacro model for clayey rocks with a plastic compressible porous matrix. <i>International Journal of Plasticity</i> , 2012 , 36, 64-85	7.6	107

Approximate criteria for ductile porous materials having a Green type matrix: Application to double porous media. <i>Computational Materials Science</i> , 2012 , 62, 189-194	3.2	30	
Micromechanical analysis of the nonlinear behavior of porous geomaterials based on the fast Fourier transform. <i>Computers and Geotechnics</i> , 2012 , 46, 69-74	4.4	13	
A hydro-mechanical-chemical coupling model for geomaterial with both mechanical and chemical damages considered. <i>Acta Mechanica Solida Sinica</i> , 2012 , 25, 361-376	2	15	
Effect of water content and structural anisotropy on mechanical property of claystone. <i>Applied Clay Science</i> , 2012 , 69, 79-86	5.2	68	
Improved slope safety analysis by new Druker-Prager type criterion. <i>Journal of Central South University</i> , 2012 , 19, 1132-1137	2.1	5	
A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. <i>Computational Materials Science</i> , 2011 , 50, 1220-1224	3.2	62	
A micromechanical analysis of elastoplastic behavior of porous materials. <i>Mechanics Research Communications</i> , 2011 , 38, 437-442	2.2	6	
A two scale model of porous rocks with Drucker P rager matrix: Application to a sandstone. <i>Mechanics Research Communications</i> , 2011 , 38, 602-606	2.2	7	
A micromechanics-based elastoplastic damage model for quasi-brittle rocks. <i>Computers and Geotechnics</i> , 2011 , 38, 970-977	4.4	37	
Deformation and Permeability Evolution of Petroleum Cement Paste Subjected to Chemical Degradation Under Temperature. <i>Transport in Porous Media</i> , 2011 , 86, 719-736	3.1	8	
A thermo-plastic/viscoplastic damage model for geomaterials. <i>Acta Mechanica Solida Sinica</i> , 2011 , 24, 195-208	2	17	
Modelling of plastic deformation and damage in cement-based material subjected to desiccation. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2011 , 35, 1877-1898	4	11	
Three-dimensional numerical modelling by XFEM of spring-layer imperfect curved interfaces with applications to linearly elastic composite materials. <i>International Journal for Numerical Methods in Engineering</i> , 2011 , 88, 307-328	2.4	23	
A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects. <i>European Journal of Mechanics, A/Solids</i> , 2011 , 30, 316-325	3.7	48	
Evolution of the mechanical behaviour of a high performance self-compacting concrete under drying. <i>Cement and Concrete Composites</i> , 2011 , 33, 380-388	8.6	28	
The behavior of oil well cement at downhole CO2 storage conditions: Static and dynamic laboratory experiments. <i>Energy Procedia</i> , 2011 , 4, 5251-5258	2.3	28	
Influence of chemical degradation on mechanical behavior of a petroleum cement paste. <i>Cement and Concrete Research</i> , 2011 , 41, 412-421	10.3	21	
Influences of chemical degradation on mechanical behaviour of a limestone. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2011 , 48, 741-747	6	65	
	Micromechanical analysis of the nonlinear behavior of porous geomaterials based on the fast Fourier transform. Computers and Geotechnics, 2012, 46, 69-74 A hydro-mechanical-chemical coupling model for geomaterial with both mechanical and chemical damages considered. Acta Mechanica Solida Sinica, 2012, 25, 361-376 Effect of water content and structural anisotropy on mechanical property of claystone. Applied Clay Science, 2012, 69, 79-86 Improved slope safety analysis by new Druker-Prager type criterion. Journal of Central South University, 2012, 19, 1132-1137 A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Computational Materials Science, 2011, 50, 1220-1224 A micromechanical analysis of elastoplastic behavior of porous materials. Mechanics Research Communications, 2011, 38, 437-442 A two scale model of porous rocks with DruckerBrager matrix: Application to a sandstone. Mechanics Research Communications, 2011, 38, 602-606 A micromechanics-based elastoplastic damage model for quasi-brittle rocks. Computers and Geotechnics, 2011, 38, 970-977 Deformation and Permeability Evolution of Petroleum Cement Paste Subjected to Chemical Degradation Under Temperature. Transport in Porous Media, 2011, 86, 719-736 A thermo-plastic/viscoplastic damage model for geomaterials. Acta Mechanica Solida Sinica, 2011, 24, 195-208 Modelling of plastic deformation and damage in cement-based material subjected to desiccation. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35, 1877-1898 Three-dimensional numerical modelling by XFEM of spring-layer imperfect curved interfaces with applications to linearly elastic composite materials. International Journal for Numerical Methods in Engineering, 2011, 88, 307-328 A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects. European Journal of Mechanics, A/Solida, 2011, 30, 316-325 Evolution of the mechanical behaviour of a high performance se	Micromechanical analysis of the nonlinear behavior of porous geomaterials based on the fast Fourier transform. Computers and Geotechnics, 2012, 46, 69-74 A hydro-mechanical-chemical coupling model For geomaterial with both mechanical and chemical damages considered. Acta Mechanica Solida Sinica, 2012, 25, 361-376 Effect of water content and structural anisotropy on mechanical property of claystone. Applied Clay Science, 2012, 69, 79-86 Improved slope safety analysis by new Druker-Prager type criterion. Journal of Central South University, 2012, 19, 1132-1137 A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Computational Amterials Science, 2011, 50, 1220-1224 A micromechanical analysis of elastoplastic behavior of porous materials. Mechanics Research Communications, 2011, 38, 437-442 A two scale model of porous rocks with DruckerBrager matrix: Application to a sandstone. Mechanics Research Communications, 2011, 38, 602-606 A micromechanics-based elastoplastic damage model for quasi-brittle rocks. Computers and Geotechnics, 2011, 38, 970-977 Deformation and Permeability Evolution of Petroleum Cement Paste Subjected to Chemical Degradation Under Temperature. Transport in Porous Media, 2011, 86, 719-736 A thermo-plastic/viscoplastic damage model for geomaterials. Acta Mechanica Solida Sinica, 2011, 24, 195-208 Modelling of plastic deformation and damage in cement-based material subjected to desiccation. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35, 1877-1898 Three-dimensional numerical modelling by XFEM of spring-layer imperfect curved interfaces with applications to linearly elastic composite materials. International Journal for Numerical Methods in Engineering, 2011, 88, 307-328 A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects. European Journal of Mechanics. A/Solids, 2011, 30, 316-325 Evolution of the mechanical behaviour of a high performance se	porous media. Computational Materials Science, 2012, 62, 189-194 Micromechanical analysis of the nonlinear behavior of porous geomaterials based on the fast Fourier transform. Computers and Geotechnics, 2012, 46, 69-74 A hydro-mechanical-chemical coupling model for geomaterial with both mechanical and chemical damages considered. Acta Mechanica Solida Sinica, 2012, 25, 361-376 Effect of water content and structural anisotropy on mechanical property of claystone. Applied Clay Science, 2012, 59, 79-86 Improved slope safety analysis by new Druker-Prager type criterion. Journal of Central South University, 2012, 19, 1132-1137 A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Computational Materials Science, 2011, 50, 1220-1224 A micromechanical analysis of elastoplastic behavior of porous materials. Mechanics Research Communications, 2011, 38, 437-442 A two scale model of porous rocks with DruckerBrager matrix: Application to a sandstone. At which we see a seed of porous rocks with DruckerBrager matrix: Application to a sandstone. A micromechanics-based elastoplastic damage model for quasi-brittle rocks. Computers and Geotechnics, 2011, 38, 970-977 Deformation and Permeability Evolution of Petroleum Cement Paste Subjected to Chemical Degradation Under Temperature. Transport in Paraus Media, 2011, 86, 719-736 A thermo-plastic/viscoplastic damage model for geomaterials. Acta Mechanics Solida Sinica, 2011, 24, 195-208 Modelling of plastic deformation and damage in cement-based material subjected to desiccation. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35, 1877-1898 Three-dimensional numerical modelling by XFEM of spring-layer imperfect curved interfaces with applications to lineary elastic composite materials. International Journal for Numerical Methods in Engineering, 2011, 89, 307-328 A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects. European Journal

106	Effects of the Storage of CO2 on Multiaxial Mechanical and Hydraulic Behaviors of Oil-Well Cement. <i>Journal of Materials in Civil Engineering</i> , 2011 , 23, 741-746	3	15
105	Numerical implementation of a recent improved Gurson-type model and application to ductile fracture. <i>Computational Materials Science</i> , 2010 , 47, 901-906	3.2	7
104	A micromechanics-based elastoplastic damage model for granular materials at low confining pressure. <i>International Journal of Plasticity</i> , 2010 , 26, 586-602	7.6	71
103	Evolution of poroelastic properties and permeability in damaged sandstone. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2010 , 47, 962-973	6	77
102	Anisotropic damage coupled modeling of saturated porous rock. <i>Science China Technological Sciences</i> , 2010 , 53, 2681-2690	3.5	4
101	Experimental study and constitutive modelling of elasto-plastic damage in heat-treated mortar. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2010 , 34, 357-382	4	2
100	Elastoplastic damage modeling of desaturation and resaturation in argillites. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2010 , 34, 187-220	4	34
99	A discrete thermodynamic approach for anisotropic plasticdamage modeling of cohesive-frictional geomaterials. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2010 , 34, 125	o [£] 1270	o ¹⁴
98	Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2010 , 47, 703-713	6	85
97	Experimental and micro-mechanical analysis of the mechanical and transport properties of mortar containing heat-induced micro-cracks. <i>Cement and Concrete Composites</i> , 2010 , 32, 678-685	8.6	14
96	Coupled elastoplastic damage modeling of anisotropic rocks. <i>Computers and Geotechnics</i> , 2010 , 37, 187	-1494	62
95	A comparative micromechanical analysis of the effective properties of a geomaterial: Effect of mineralogical compositions. <i>Computers and Geotechnics</i> , 2010 , 37, 585-593	4.4	24
94	A discrete approach for anisotropic plasticity and damage in semi-brittle rocks. <i>Computers and Geotechnics</i> , 2010 , 37, 658-666	4.4	19
93	A multiscale modeling of damage and time-dependent behavior of cohesive rocks. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2009 , 33, 567-589	4	17
92	Homogenization-based analysis of anisotropic damage in brittle materials with unilateral effect and interactions between microcracks. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2009 , 33, 749-772	4	42
91	Multiscale modeling of the macroscopic size-dependent effects of interfacial transition zones in concrete and their damage. <i>Procedia Engineering</i> , 2009 , 1, 27-30		1
90	Poroplastic damage modeling of unsaturated cement-based materials. <i>Mechanics Research Communications</i> , 2009 , 36, 906-915	2.2	9
89	Application of a micromechanical model to cavity excavation analysis in argillite. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2009 , 46, 905-917	6	5

(2007-2009)

88	Numerical modelling of in situ behaviour of the Callovo Dxfordian argillite subjected to the thermal loading. <i>Engineering Geology</i> , 2009 , 109, 262-272	6	18
87	Multi-scale modeling for inelastic behavior of a cohesive geomaterial. <i>Mechanics Research Communications</i> , 2009 , 36, 673-681	2.2	7
86	Effect of heat-treatment and hydrostatic loading upon the poro-elastic properties of a mortar. <i>Cement and Concrete Research</i> , 2009 , 39, 195-205	10.3	23
85	On the incremental approach for nonlinear homogenization of composite and influence of isotropization. <i>Computational Materials Science</i> , 2009 , 46, 447-451	3.2	14
84	A micromechanical model for the elasto-viscoplastic and damage behavior of a cohesive geomaterial. <i>Physics and Chemistry of the Earth</i> , 2008 , 33, S416-S421	3	10
83	Hydromechanical modelling of shaft excavation in Meuse/Haute-Marne laboratory. <i>Physics and Chemistry of the Earth</i> , 2008 , 33, S422-S435	3	23
82	Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir 2008,		1
81	A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials. <i>Comptes Rendus - Mecanique</i> , 2008 , 336, 320-328	2.1	14
80	A discrete thermodynamic approach for modeling anisotropic coupled plasticity-damage behavior in geomaterials. <i>Comptes Rendus - Mecanique</i> , 2008 , 336, 376-383	2.1	8
79	A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial. <i>International Journal of Solids and Structures</i> , 2008 , 45, 1406-1429	3.1	89
78	Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: Role of the homogenization scheme. <i>International Journal of Solids and Structures</i> , 2008 , 45, 1385-1405	3.1	91
77	Experimental study of mechanical behaviour of cement paste under compressive stress and chemical degradation. <i>Cement and Concrete Research</i> , 2008 , 38, 1416-1423	10.3	40
76	Micromechanical modelling of anisotropic damage in brittle rocks and application. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2008 , 45, 467-477	6	71
75	A unified elasticplastic and viscoplastic damage model for quasi-brittle rocks. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2008 , 45, 1237-1251	6	77
74	Couplage comportement mbanique et permabilit la Revue Europanne De Ghie Civil, 2007, 11, 827-837		1
73	Micromechanics based modeling of the Callovo-Oxfordian argillite mechanical behavior. <i>Mecanique Et Industries</i> , 2007 , 8, 225-234		1
72	Intergranular pressure solution in chalk: a multiscale approach. <i>Computers and Geotechnics</i> , 2007 , 34, 291-305	4.4	21
71	Modelling of elastoplastic behaviour with non-local damage in concrete under compression. <i>Computers and Structures</i> , 2007 , 85, 1757-1768	4.5	25

70	Thermo-hydro-mechanical modelling of an in situ heating experiment. <i>Geotechnique</i> , 2007 , 57, 845-855	3.4	13
69	Elastoplastic Damage Behavior of a Mortar Subjected to Compression and Desiccation. <i>Journal of Engineering Mechanics - ASCE</i> , 2007 , 133, 464-472	2.4	17
68	An elastoplastic damage model for semi-brittle rocks. <i>Geomechanics and Geoengineering</i> , 2007 , 2, 253-2	267.4	6
67	Elastoplastic damage modelling of argillite in partially saturated condition and application. <i>Physics and Chemistry of the Earth</i> , 2007 , 32, 656-666	3	36
66	Coupled modeling of damage growth and permeability variation in brittle rocks. <i>Mechanics Research Communications</i> , 2006 , 33, 450-459	2.2	26
65	Elastoplastic deformation of a porous rock and water interaction. <i>International Journal of Plasticity</i> , 2006 , 22, 2195-2225	7.6	101
64	Modelling of deformation response and chemo-mechanical coupling in chalk. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2006 , 30, 997-1018	4	25
63	Elastoplastic Damage Modeling in Unsaturated Rocks and Applications. <i>International Journal of Geomechanics</i> , 2006 , 6, 119-130	3.1	19
62	Elastoplasticitlet endommagement dans un matliau cimentaire en cours de dessiccation. <i>Revue Europl</i> enne De Ghie Civil, 2006 , 10, 405-421		
61	PĒrofabrique et propri t ā māaniques des argilites. <i>Comptes Rendus - Geoscience</i> , 2006 , 338, 882-891	1.4	28
60	Subcritical crack growth of edge and center cracks in fallde rock panels subject to periodic surface temperature variations. <i>International Journal of Solids and Structures</i> , 2006 , 43, 807-827	3.1	31
59	Modeling of anisotropic damage and creep deformation in brittle rocks. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2006 , 43, 582-592	6	113
58	A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. <i>Mechanics of Materials</i> , 2006 , 38, 218-232	3.3	154
57	Effects of desiccation on mechanical behaviour of concrete. <i>Cement and Concrete Composites</i> , 2005 , 27, 367-379	8.6	71
56	Study of desaturation and resaturation in brittle rock with anisotropic damage. <i>Engineering Geology</i> , 2005 , 81, 341-352	6	20
55	Coupling between anisotropic damage and permeability variation in brittle rocks. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2005 , 29, 1231-1247	4	107
54	Modeling of Plastic Deformation of Saturated Porous Materials: Effective Stress Concept 2005 , 187-20	4	1
53	Coupled hydromechanical modeling of rock fractures under normal stress. <i>Canadian Geotechnical Journal</i> , 2004 , 41, 686-697	3.2	15

(2000-2004)

52	Damage Modeling of Saturated Rocks in Drained and Undrained Conditions. <i>Journal of Engineering Mechanics - ASCE</i> , 2004 , 130, 733-740	2.4	45
51	Description of Creep in Inherently Anisotropic Frictional Materials. <i>Journal of Engineering Mechanics - ASCE</i> , 2004 , 130, 681-690	2.4	39
50	Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2004 , 41, 669-677	6	24
49	Mise en livre d'une modisation lasto-plastique endommageable du blon. <i>Revue Europl</i> enne De Ghie Civil, 2003 , 7, 583-594		1
48	On anisotropy of stratified rocks: homogenization and fabric tensor approach. <i>Computers and Geotechnics</i> , 2003 , 30, 289-302	4.4	26
47	Modeling of creep in rock materials in terms of material degradation. <i>Computers and Geotechnics</i> , 2003 , 30, 549-555	4.4	149
46	Modeling of elastoplastic damage behavior of a claystone. <i>International Journal of Plasticity</i> , 2003 , 19, 23-45	7.6	196
45	Modelling of elastoplastic damage in concrete due to desiccation shrinkage. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2002 , 26, 759-774	4	42
44	Modelling of anisotropic damage in brittle rocks under compression dominated stresses. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2002 , 26, 945-961	4	14
43	Stress equivalence principle for saturated porous media. <i>Comptes Rendus - Mecanique</i> , 2002 , 330, 297-3	3021	35
42	An elastoplastic model for unsaturated rocks and concrete. <i>Mechanics Research Communications</i> , 2002 , 29, 383-390	2.2	21
41	Modelling of inherent anisotropy in sedimentary rocks. <i>International Journal of Solids and Structures</i> , 2002 , 39, 637-648	3.1	89
40	Comparaison des concepts et prélictions des modles. Revue Europenne De Gbie Civil, 2002, 6, 131-143		1
39	Poroelastic behaviour of saturated brittle rock with anisotropic damage. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2000 , 24, 1139-1154	4	5
38	Study of poroelasticity material coefficients as response of microstructure. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2000 , 5, 149-171		47
37	Mechanical behaviour of a porous chalk and effect of saturating fluid. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 2000 , 5, 583-606		37
36	A microcrack-based continuous damage model for brittle geomaterials. <i>Mechanics of Materials</i> , 2000 , 32, 607-619	3.3	89
35	Mechanical Behaviour of a Porous Chalk and Water/Chalk Interaction. Part Ii: Numerical Modelling. Oil and Gas Science and Technology, 2000 , 55, 599-609	1.9	16

34	Mechanical Behaviour of a Porous Chalk and Water/Chalk Interaction. Part I: Experimental Study. <i>Oil and Gas Science and Technology</i> , 2000 , 55, 591-598	1.9	32
33	Une Eude expEimentale du comportement poromEanique d'une roche fragile saturE. <i>Revue Europ</i> Enne De Ghie Civil, 2000 , 4, 109-142		3
32	Modelling of induced anisotropic damage in granites. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 1999 , 36, 1001-1012	6	63
31	Un modle d'endommagement porolastique pour milieux poreux sature. <i>Comptes Rendus De LiAcademie De Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie</i> , 1999 , 327, 1305-1310		
30	Assessment of some failure criteria for strongly anisotropic geomaterials. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 1998 , 3, 1-26		109
29	A new anisotropic failure criterion for transversely isotropic solids. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i> , 1998 , 3, 89-103		22
28	A continuum damage constitutive law for brittle rocks. <i>Computers and Geotechnics</i> , 1998 , 22, 135-151	4.4	79
27	A modified single plane of weakness theory for the failure of highly stratified rocks. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 1998 , 35, 807-813	6	50
26	Poroelastic behaviour of brittle rock materials with anisotropic damage. <i>Mechanics of Materials</i> , 1998 , 30, 41-53	3.3	78
25	Plastic Modelling Of Compressible Porous Chalk and Effect of Water Injection 1998,		4
24	A new anisotropic failure criterion for transversely isotropic solids 1998 , 3, 89		1
23	Time dependent continuous damage model for deformation and failure of brittle rock. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 1997 , 34, 285.e1-285.e13	6	6
22	Laboratory investigation of the mechanical behaviour of Tournemire shale. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 1997 , 34, 3-16	6	541
21	A numerical solution for a thermo-hydro-mechanical coupling problem with heat convection. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 1997 , 34, 163-166	6	8
20	A continuum damage mechanics approach for time independent and dependent behaviour of brittle rock. <i>Mechanics Research Communications</i> , 1996 , 23, 257-265	2.2	16
19	Experimental and numerical investigations on transient creep of porous chalk. <i>Mechanics of Materials</i> , 1995 , 21, 147-158	3.3	45
18	Elasto-viscoplastic modelling of a porous chalk. <i>Mechanics Research Communications</i> , 1994 , 21, 63-75	2.2	4

LIST OF PUBLICATIONS

16	Study of massive water injection by thermoporomechanical coupling model. <i>Computers and Geotechnics</i> , 1993 , 15, 105-121	4.4	2
15	Development of an elastoplastic model for porous rock. <i>International Journal of Plasticity</i> , 1991 , 7, 1-13	3 7.6	40
14	Application de la thBrie des probl i hes inverses ll'estimation des param li res des modles rhBlogiques. <i>Revue Fran</i> d ise De Gbtechnique, 1991 , 75-80	0.1	3
13	Elasto-Viscoplastic Modelling of Porous Rock under High Confining Pressure 1991 , 266-269		
12	Validation of an elastoplastic model for chalk. <i>Computers and Geotechnics</i> , 1990 , 9, 257-272	4.4	2
11	Modlisation du comportement dune craie blanche tra poreuse et validation. <i>Revue Frandise De Götechnique</i> , 1988 , 35-46	0.1	2
10	Non-linear Micro-cracked Geomaterials: Anisotropic Damage and Coupling with Plasticity177-201		
9	Creep Deformation and Gas Permeability in Fractured Claystone Under Various Stress States. <i>Rock Mechanics and Rock Engineering</i> ,1	5.7	
8	Experimental Investigation and Semi-Analytical Simulation of Instantaneous and Time-Dependent Damage Behaviors of Beishan Granite. <i>Rock Mechanics and Rock Engineering</i> ,1	5.7	О
7	A Non-local Anisotropic Micromechanics Based Damage Model Applied to Concrete797-804		
6	Poromechanical Behavior of Saturated Cohesive Rocks377-404		
5	3D Fully Coupled Multiphase Modeling of Ekofisk Reservoir447-456		
4	Parameter Identification 405-432		
3	Normal Stress-Induced Permeability Reduction of a Fracture in a Large Granite Cylinder211-218		
2	Effects of high temperatures and unloading confining pressures on granite. <i>Environmental Geotechnics</i> ,1-11	1.2	
1	Numerical study on the dynamic behavior of rock avalanche: influence of cluster shape, size and gradation. <i>Acta Geotechnica</i> ,1	4.9	1