

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5569863/publications.pdf Version: 2024-02-01

I-E SHAO

#	Article	IF	CITATIONS
1	Laboratory investigation of the mechanical behaviour of Tournemire shale. International Journal of Rock Mechanics and Minings Sciences, 1997, 34, 3-16.	5.8	707
2	Modeling of elastoplastic damage behavior of a claystone. International Journal of Plasticity, 2003, 19, 23-45.	8.8	229
3	A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mechanics of Materials, 2006, 38, 218-232.	3.2	191
4	Laboratory Investigation on Physical and Mechanical Properties of Granite After Heating and Water-Cooling Treatment. Rock Mechanics and Rock Engineering, 2018, 51, 677-694.	5.4	184
5	Modeling of creep in rock materials in terms of material degradation. Computers and Geotechnics, 2003, 30, 549-555.	4.7	183
6	Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale. International Journal of Rock Mechanics and Minings Sciences, 2014, 70, 185-191.	5.8	180
7	Modeling of anisotropic damage and creep deformation in brittle rocks. International Journal of Rock Mechanics and Minings Sciences, 2006, 43, 582-592.	5.8	142
8	Coupling between anisotropic damage and permeability variation in brittle rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29, 1231-1247.	3.3	135
9	A micro–macro model for clayey rocks with a plastic compressible porous matrix. International Journal of Plasticity, 2012, 36, 64-85.	8.8	130
10	Assessment of some failure criteria for strongly anisotropic geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 3, 1-26.	0.8	123
11	Elastoplastic deformation of a porous rock and water interaction. International Journal of Plasticity, 2006, 22, 2195-2225.	8.8	120
12	Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: Role of the homogenization scheme. International Journal of Solids and Structures, 2008, 45, 1385-1405.	2.7	119
13	Modelling of inherent anisotropy in sedimentary rocks. International Journal of Solids and Structures, 2002, 39, 637-648.	2.7	113
14	A microcrack-based continuous damage model for brittle geomaterials. Mechanics of Materials, 2000, 32, 607-619.	3.2	103
15	A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial. International Journal of Solids and Structures, 2008, 45, 1406-1429.	2.7	103
16	Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks. International Journal of Rock Mechanics and Minings Sciences, 2010, 47, 703-713.	5.8	103
17	Evolution of poroelastic properties and permeability in damaged sandstone. International Journal of Rock Mechanics and Minings Sciences, 2010, 47, 962-973.	5.8	100
18	Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches. Landslides, 2014, 11, 889-896.	5.4	98

#	Article	IF	CITATIONS
19	Poroelastic behaviour of brittle rock materials with anisotropic damage. Mechanics of Materials, 1998, 30, 41-53.	3.2	97
20	Prediction of rock burst classification using the technique of cloud models with attribution weight. Natural Hazards, 2013, 68, 549-568.	3.4	95
21	A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks. International Journal of Rock Mechanics and Minings Sciences, 2008, 45, 1237-1251.	5.8	92
22	Micromechanical modelling of anisotropic damage in brittle rocks and application. International Journal of Rock Mechanics and Minings Sciences, 2008, 45, 467-477.	5.8	88
23	A micromechanics-based elastoplastic damage model for granular materials at low confining pressure. International Journal of Plasticity, 2010, 26, 586-602.	8.8	88
24	A refined micromechanical damage–friction model with strength prediction for rock-like materials under compression. International Journal of Solids and Structures, 2015, 60-61, 75-83.	2.7	85
25	A continuum damage constitutive law for brittle rocks. Computers and Geotechnics, 1998, 22, 135-151.	4.7	84
26	Influences of chemical degradation on mechanical behaviour of a limestone. International Journal of Rock Mechanics and Minings Sciences, 2011, 48, 741-747.	5.8	84
27	Effects of desiccation on mechanical behaviour of concrete. Cement and Concrete Composites, 2005, 27, 367-379.	10.7	83
28	Damage and Plastic Deformation Modeling of Beishan Granite Under Compressive Stress Conditions. Rock Mechanics and Rock Engineering, 2015, 48, 1623-1633.	5.4	83
29	Analytical and numerical analysis of frictional damage in quasi brittle materials. Journal of the Mechanics and Physics of Solids, 2016, 92, 137-163.	4.8	83
30	Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach. Computers and Geotechnics, 2019, 105, 51-68.	4.7	83
31	Coupled elastoplastic damage modeling of anisotropic rocks. Computers and Geotechnics, 2010, 37, 187-194.	4.7	82
32	Effect of water content and structural anisotropy on mechanical property of claystone. Applied Clay Science, 2012, 69, 79-86.	5.2	81
33	An extreme learning machine approach for slope stability evaluation and prediction. Natural Hazards, 2014, 73, 787-804.	3.4	81
34	Numerical study of hydraulic fracture propagation accounting for rock anisotropy. Journal of Petroleum Science and Engineering, 2018, 160, 422-432.	4.2	78
35	Modelling of induced anisotropic damage in granites. International Journal of Rock Mechanics and Minings Sciences, 1999, 36, 1001-1012.	5.8	76
36	Effects of deviatoric stress and structural anisotropy on compressive creep behavior of a clayey rock. Applied Clay Science, 2015, 114, 491-496.	5.2	74

#	Article	IF	CITATIONS
37	A micro-mechanics based plastic damage model for quasi-brittle materials under a large range of compressive stress. International Journal of Plasticity, 2018, 100, 156-176.	8.8	74
38	A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Computational Materials Science, 2011, 50, 1220-1224.	3.0	72
39	A closed-form three scale model for ductile rocks with a plastically compressible porous matrix. Mechanics of Materials, 2013, 59, 73-86.	3.2	70
40	A modified single plane of weakness theory for the failure of highly stratified rocks. International Journal of Rock Mechanics and Minings Sciences, 1998, 35, 807-813.	5.8	69
41	A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects. European Journal of Mechanics, A/Solids, 2011, 30, 316-325.	3.7	64
42	Experimental Researches on Hydro-Mechanical Properties of Altered Rock Under Confining Pressures. Rock Mechanics and Rock Engineering, 2014, 47, 485-493.	5.4	63
43	An extended finite element solution for hydraulic fracturing with thermo-hydro-elastic–plastic coupling. Computer Methods in Applied Mechanics and Engineering, 2020, 364, 112967.	6.6	59
44	An Experimental Investigation and an Elastoplastic Constitutive Model for a Porous Rock. Rock Mechanics and Rock Engineering, 2013, 46, 1499-1511.	5.4	57
45	Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine. Acta Geotechnica, 2015, 10, 651-663.	5.7	57
46	Nuclear Smad6 promotes gliomagenesis by negatively regulating PIAS3-mediated STAT3 inhibition. Nature Communications, 2018, 9, 2504.	12.8	57
47	Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression. International Journal of Rock Mechanics and Minings Sciences, 2018, 103, 68-76.	5.8	56
48	Study of poroelasticity material coefficients as response of microstructure. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 5, 149-171.	0.8	55
49	A single-objective EPR based model for creep index of soft clays considering L2 regularization. Engineering Geology, 2019, 248, 242-255.	6.3	54
50	Influences of Mineralogy and Water Content on the Mechanical Properties of Argillite. Rock Mechanics and Rock Engineering, 2014, 47, 157-166.	5.4	53
51	A unified micromechanics-based damage model for instantaneous and time-dependent behaviors of brittle rocks. International Journal of Rock Mechanics and Minings Sciences, 2016, 84, 187-196.	5.8	52
52	Incorporation of tension-compression asymmetry into plastic damage phase-field modeling of quasi brittle geomaterials. International Journal of Plasticity, 2020, 124, 71-95.	8.8	50
53	Description of Creep in Inherently Anisotropic Frictional Materials. Journal of Engineering Mechanics - ASCE, 2004, 130, 681-690.	2.9	49
54	Experimental study of mechanical behaviour of cement paste under compressive stress and chemical degradation. Cement and Concrete Research, 2008, 38, 1416-1423.	11.0	49

#	Article	IF	CITATIONS
55	An incremental micro-macro model for porous geomaterials with double porosity and inclusion. International Journal of Plasticity, 2016, 83, 37-54.	8.8	49
56	Development of an elastoplastic model for porous rock. International Journal of Plasticity, 1991, 7, 1-13.	8.8	48
57	Damage Modeling of Saturated Rocks in Drained and Undrained Conditions. Journal of Engineering Mechanics - ASCE, 2004, 130, 733-740.	2.9	48
58	Numerical simulation of damage and failure in brittle rocks using a modified rigid block spring method. Computers and Geotechnics, 2015, 64, 48-60.	4.7	48
59	Experimental and numerical investigations on transient creep of porous chalk. Mechanics of Materials, 1995, 21, 147-158.	3.2	47
60	Modelling of elastoplastic damage in concrete due to desiccation shrinkage. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26, 759-774.	3.3	47
61	Homogenizationâ€based analysis of anisotropic damage in brittle materials with unilateral effect and interactions between microcracks. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33, 749-772.	3.3	47
62	Experimental investigation and poroplastic modelling of saturated porous geomaterials. International Journal of Plasticity, 2012, 39, 27-45.	8.8	47
63	Comprehensive Stability Evaluation of Rock Slope Using the Cloud Model-Based Approach. Rock Mechanics and Rock Engineering, 2014, 47, 2239-2252.	5.4	47
64	Experimental Investigation on Mechanical Behavior and Permeability Evolution of a Porous Limestone Under Compression. Rock Mechanics and Rock Engineering, 2016, 49, 3425-3435.	5.4	47
65	A micromechanics-based elastoplastic damage model for quasi-brittle rocks. Computers and Geotechnics, 2011, 38, 970-977.	4.7	46
66	Experimental study of poromechanical behavior of saturated claystone under triaxial compression. Acta Geotechnica, 2014, 9, 207-214.	5.7	46
67	Micromechanics of rock damage: Advances in the quasi-brittle field. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9, 29-40.	8.1	46
68	Bayesian model selection for sand with generalization ability evaluation. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43, 2305-2327.	3.3	46
69	The gas permeability properties of low-permeability rock in the process of triaxial compression test. Materials Letters, 2014, 116, 386-388.	2.6	45
70	Time-Dependent Behavior of Cataclastic Rocks in a Multi-Loading Triaxial Creep Test. Rock Mechanics and Rock Engineering, 2016, 49, 3793-3803.	5.4	44
71	Curcumin Enhances the Radiosensitivity of U87 Cells by Inducing DUSP-2 Up-Regulation. Cellular Physiology and Biochemistry, 2015, 35, 1381-1393.	1.6	43
72	A discrete approach for modeling damage and failure in anisotropic cohesive brittle materials. Engineering Fracture Mechanics, 2016, 155, 102-118.	4.3	43

#	Article	IF	CITATIONS
73	A new bond model in peridynamics theory for progressive failure in cohesive brittle materials. Engineering Fracture Mechanics, 2020, 223, 106767.	4.3	43
74	Mechanical behaviour of a porous chalk and effect of saturating fluid. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 5, 583-606.	0.8	42
75	Strength Behavior, Creep Failure and Permeability Change of a Tight Marble Under Triaxial Compression. Rock Mechanics and Rock Engineering, 2017, 50, 529-541.	5.4	42
76	Micromechanical analysis of damage in saturated quasi brittle materials. International Journal of Solids and Structures, 2012, 49, 919-928.	2.7	41
77	Influence of alkali silica reaction (ASR) on mechanical properties of mortar. Construction and Building Materials, 2013, 47, 165-174.	7.2	41
78	A micro-macro model for time-dependent behavior of clayey rocks due to anisotropic propagation of microcracks. International Journal of Plasticity, 2015, 69, 73-88.	8.8	41
79	Stress equivalence principle for saturated porous media. Comptes Rendus - Mecanique, 2002, 330, 297-303.	2.1	40
80	Elastoplastic damage modelling of argillite in partially saturated condition and application. Physics and Chemistry of the Earth, 2007, 32, 656-666.	2.9	40
81	Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project. Water Science and Engineering, 2015, 8, 55-62.	3.2	40
82	Analysis of localized cracking in quasi-brittle materials with a micro-mechanics based friction-damage approach. Journal of the Mechanics and Physics of Solids, 2018, 119, 163-187.	4.8	40
83	Induced anisotropic damage and plasticity in initially anisotropic sedimentary rocks. International Journal of Rock Mechanics and Minings Sciences, 2012, 51, 13-23.	5.8	39
84	Damage and plastic friction in initially anisotropic quasi brittle materials. International Journal of Plasticity, 2016, 82, 260-282.	8.8	39
85	Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Molecular Medicine Reports, 2016, 13, 3763-3770.	2.4	38
86	Mechanical Behaviour of a Porous Chalk and Water/Chalk Interaction. Part I: Experimental Study. Oil and Gas Science and Technology, 2000, 55, 591-598.	1.4	37
87	Elastoplastic damage modeling of desaturation and resaturation in argillites. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34, 187-220.	3.3	36
88	Threeâ€dimensional numerical modelling by XFEM of springâ€layer imperfect curved interfaces with applications to linearly elastic composite materials. International Journal for Numerical Methods in Engineering, 2011, 88, 307-328.	2.8	36
89	Evolution of the mechanical behaviour of a high performance self-compacting concrete under drying. Cement and Concrete Composites, 2011, 33, 380-388.	10.7	36
90	The behavior of oil well cement at downhole CO2 storage conditions: Static and dynamic laboratory experiments. Energy Procedia, 2011, 4, 5251-5258.	1.8	36

#	Article	IF	CITATIONS
91	Approximate criteria for ductile porous materials having a Green type matrix: Application to double porous media. Computational Materials Science, 2012, 62, 189-194.	3.0	36
92	A Numerical Analysis of Permeability Evolution in Rocks with Multiple Fractures. Transport in Porous Media, 2015, 108, 289-311.	2.6	36
93	Multi-step triaxial compressive creep behaviour and induced gas permeability change of clay-rich rock. Geotechnique, 2018, 68, 281-289.	4.0	36
94	Mechanical Behavior of Claystone in Lateral Decompression Test and Thermal Effect. Rock Mechanics and Rock Engineering, 2019, 52, 321-334.	5.4	36
95	Subcritical crack growth of edge and center cracks in façade rock panels subject to periodic surface temperature variations. International Journal of Solids and Structures, 2006, 43, 807-827.	2.7	35
96	Approximate macroscopic yield criteria for Drucker-Prager type solids with spheroidal voids. International Journal of Plasticity, 2017, 99, 221-247.	8.8	35
97	A novel FFT-based phase field model for damage and cracking behavior of heterogeneous materials. International Journal of Plasticity, 2020, 133, 102786.	8.8	35
98	A comparative micromechanical analysis of the effective properties of a geomaterial: Effect of mineralogical compositions. Computers and Geotechnics, 2010, 37, 585-593.	4.7	34
99	Influences of temperature and water content on mechanical property of argillite. European Journal of Environmental and Civil Engineering, 2014, 18, 173-189.	2.1	34
100	Influence of cooling rate on thermal degradation of physical and mechanical properties of granite. International Journal of Rock Mechanics and Minings Sciences, 2020, 129, 104285.	5.8	34
101	Gas permeability evolution of clayey rocks in process of compressive creep test. Materials Letters, 2015, 139, 422-425.	2.6	33
102	Analysis of 4931 renal biopsy data in central China from 1994 to 2014. Renal Failure, 2016, 38, 1021-1030.	2.1	33
103	Effects of inclusions and pores on plastic and viscoplastic deformation of rock-like materials. International Journal of Plasticity, 2018, 108, 107-124.	8.8	33
104	A new experimental method for tensile property study of quartz sandstone under confining pressure. International Journal of Rock Mechanics and Minings Sciences, 2019, 123, 104091.	5.8	33
105	Modelling of elastoplastic behaviour with non-local damage in concrete under compression. Computers and Structures, 2007, 85, 1757-1768.	4.4	32
106	Risk factors for the development of avascular necrosis after femoral neck fractures in children. Bone and Joint Journal, 2019, 101-B, 1160-1167.	4.4	32
107	Effect of water chemical corrosion on mechanical properties and failure modes of pre-fissured sandstone under uniaxial compression. Acta Geotechnica, 2021, 16, 1083-1099.	5.7	32
108	Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation. International Journal of Rock Mechanics and Minings Sciences, 2004, 41, 669-677.	5.8	31

#	Article	IF	CITATIONS
109	Numerical study of excavation induced fractures using an extended rigid block spring method. Computers and Geotechnics, 2017, 85, 368-383.	4.7	31
110	Pétrofabrique et propriétés mécaniques des argilites. Comptes Rendus - Geoscience, 2006, 338, 882-89	911.2	30
111	Modelling of deformation response and chemo-mechanical coupling in chalk. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30, 997-1018.	3.3	30
112	Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone. Rock Mechanics and Rock Engineering, 2015, 48, 1083-1096.	5.4	30
113	An Experimental Study and Constitutive Modeling of Saturated Porous Rocks. Rock Mechanics and Rock Engineering, 2015, 48, 223-234.	5.4	30
114	Characterization of the mechanical properties of a claystone by nano-indentation and homogenization. Acta Geotechnica, 2018, 13, 1395-1404.	5.7	30
115	Numerical study of thermo-hydro-mechanical responses of in situ heating test with phase-field model. International Journal of Rock Mechanics and Minings Sciences, 2021, 138, 104542.	5.8	30
116	Coupled modeling of damage growth and permeability variation in brittle rocks. Mechanics Research Communications, 2006, 33, 450-459.	1.8	29
117	Compressive strength of cement-based composites: Roles of aggregate diameter and water saturation degree. Cement and Concrete Composites, 2013, 37, 249-258.	10.7	29
118	Gas permeability evolution mechanism during creep of a low permeable claystone. Applied Clay Science, 2016, 129, 47-53.	5.2	29
119	On anisotropy of stratified rocks: homogenization and fabric tensor approach. Computers and Geotechnics, 2003, 30, 289-302.	4.7	28
120	Study of deformation and failure in an anisotropic rock with a three-dimensional discrete element model. International Journal of Rock Mechanics and Minings Sciences, 2019, 120, 17-28.	5.8	28
121	Effects of confining pressure and loading path on deformation and strength of cohesive granular materials: a three-dimensional DEM analysis. Acta Geotechnica, 2019, 14, 443-460.	5.7	28
122	Effect of heat-treatment and hydrostatic loading upon the poro-elastic properties of a mortar. Cement and Concrete Research, 2009, 39, 195-205.	11.0	27
123	Elastoplastic damage modeling the mechanical behavior of rock-like materials considering confining pressure dependency. Mechanics Research Communications, 2013, 53, 1-8.	1.8	27
124	Evaluation and improvement of macroscopic yield criteria of porous media having a Drucker-Prager matrix. International Journal of Plasticity, 2020, 126, 102609.	8.8	27
125	Study of desaturation and resaturation in brittle rock with anisotropic damage. Engineering Geology, 2005, 81, 341-352.	6.3	26
126	Influence of chemical degradation on mechanical behavior of a petroleum cement paste. Cement and Concrete Research, 2011, 41, 412-421.	11.0	26

#	Article	IF	CITATIONS
127	Influences of micro-pores and meso-pores on elastic and plastic properties of porous materials. European Journal of Mechanics, A/Solids, 2018, 72, 407-423.	3.7	26
128	An elastoplastic model for unsaturated rocks and concrete. Mechanics Research Communications, 2002, 29, 383-390.	1.8	25
129	Hydromechanical modelling of shaft excavation in Meuse/Haute-Marne laboratory. Physics and Chemistry of the Earth, 2008, 33, S422-S435.	2.9	25
130	Creep behaviour and permeability evolution of cataclastic sandstone in triaxial rheological tests. European Journal of Environmental and Civil Engineering, 2015, 19, 496-519.	2.1	25
131	Moisture effects on damage and failure of Bure claystone under compression. Geotechnique Letters, 2016, 6, 182-186.	1.2	25
132	A new anisotropic failure criterion for transversely isotropic solids. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 3, 89-103.	0.8	24
133	A micromechanical model of inherently anisotropic rocks. Computers and Geotechnics, 2015, 65, 73-79.	4.7	24
134	Association between inflammatory cytokines and the risk of post-stroke depression, and the effect of depression on outcomes of patients with ischemic stroke in a 2-year prospective study. Experimental and Therapeutic Medicine, 2016, 12, 1591-1598.	1.8	24
135	A Micromechanics-Based Elastoplastic Damage Model for Rocks with a Brittle–Ductile Transition in Mechanical Response. Rock Mechanics and Rock Engineering, 2018, 51, 1729-1737.	5.4	24
136	A new macroscopic criterion of porous materials with a Mises-Schleicher compressible matrix. European Journal of Mechanics, A/Solids, 2015, 49, 531-538.	3.7	23
137	Cas Permeability Evolution with Deformation and Cracking Process in a White Marble Under Compression. Transport in Porous Media, 2016, 111, 441-455.	2.6	23
138	Effects of Acid Solution on the Mechanical Behavior of Sandstone. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	23
139	Laboratory Investigations of the Hydro-Mechanical–Chemical Coupling Behaviour of Sandstone in CO2 Storage in Aquifers. Rock Mechanics and Rock Engineering, 2016, 49, 417-426.	5.4	23
140	A new discrete method for modeling hydraulic fracturing in cohesive porous materials. Journal of Petroleum Science and Engineering, 2019, 180, 257-267.	4.2	23
141	An adaptive coupling method of state-based peridynamics theory and finite element method for modeling progressive failure process in cohesive materials. Computer Methods in Applied Mechanics and Engineering, 2020, 370, 113248.	6.6	23
142	Intergranular pressure solution in chalk: a multiscale approach. Computers and Geotechnics, 2007, 34, 291-305.	4.7	22
143	Some micromechanical models of elastoplastic behaviors of porous geomaterials. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9, 1-17.	8.1	22
144	A damage model of mechanical behavior of porous materials: Application to sandstone. International Journal of Damage Mechanics, 2018, 27, 1325-1351.	4.2	22

#	Article	IF	CITATIONS
145	Homogenization of rock-like materials with plastic matrix based on an incremental variational principle. International Journal of Plasticity, 2019, 123, 145-164.	8.8	22
146	Elastoplastic Damage Modeling in Unsaturated Rocks and Applications. International Journal of Geomechanics, 2006, 6, 119-130.	2.7	21
147	A multiscale modeling of damage and timeâ€dependent behavior of cohesive rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33, 567-589.	3.3	21
148	Modeling of inherent anisotropic behavior of partially saturated clayey rocks. Computers and Geotechnics, 2013, 48, 29-40.	4.7	21
149	A discrete viscoplastic damage model for time-dependent behaviour of quasi-brittle rocks. International Journal of Damage Mechanics, 2015, 24, 21-40.	4.2	21
150	Foliation Effects on Mechanical and Failure Characteristics of Slate in 3D Space Under Brazilian Test Conditions. Rock Mechanics and Rock Engineering, 2020, 53, 3919-3936.	5.4	21
151	Numerical modelling of in situ behaviour of the Callovo–Oxfordian argillite subjected to the thermal loading. Engineering Geology, 2009, 109, 262-272.	6.3	20
152	A discrete approach for anisotropic plasticity and damage in semi-brittle rocks. Computers and Geotechnics, 2010, 37, 658-666.	4.7	20
153	Change in the permeability of clastic rock during multi-loading triaxial compressive creep tests. Geotechnique Letters, 2015, 5, 167-172.	1.2	20
154	A novel micromechanics-enhanced phase-field model for frictional damage and fracture of quasi-brittle geomaterials. Computer Methods in Applied Mechanics and Engineering, 2021, 385, 114060.	6.6	20
155	A discrete thermodynamic approach for anisotropic plastic–damage modeling of cohesiveâ€frictional geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34, 1250-1270.	3.3	19
156	A thermo-plastic/viscoplastic damage model for geomaterials. Acta Mechanica Solida Sinica, 2011, 24, 195-208.	1.9	19
157	A hydro-mechanical-chemical coupling model for geomaterial with both mechanical and chemical damages considered. Acta Mechanica Solida Sinica, 2012, 25, 361-376.	1.9	19
158	Coupled hydromechanical modeling of rock fractures under normal stress. Canadian Geotechnical Journal, 2004, 41, 686-697.	2.8	18
159	Elastoplastic Damage Behavior of a Mortar Subjected to Compression and Desiccation. Journal of Engineering Mechanics - ASCE, 2007, 133, 464-472.	2.9	18
160	Estimation of constituent properties of concrete materials with an artificial neural network based method. Cement and Concrete Research, 2021, 150, 106614.	11.0	18
161	Modelling of anisotropic damage in brittle rocks under compression dominated stresses. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26, 945-961.	3.3	17
162	Effects of the Storage of CO2 on Multiaxial Mechanical and Hydraulic Behaviors of Oil-Well Cement. Journal of Materials in Civil Engineering, 2011, 23, 741-746.	2.9	17

#	Article	IF	CITATIONS
163	Estimation of Elasticity of Porous Rock Based on Mineral Composition and Microstructure. Advances in Materials Science and Engineering, 2013, 2013, 1-10.	1.8	17
164	A micromechanical analysis of time-dependent behavior based on subcritical damage in claystones. International Journal of Damage Mechanics, 2013, 22, 773-790.	4.2	17
165	Modeling of hydraulic fracturing in viscoelastic formations with the fractional Maxwell model. Computers and Geotechnics, 2020, 126, 103723.	4.7	17
166	A continuum damage mechanics approach for time independent and dependent behaviour of brittle rock. Mechanics Research Communications, 1996, 23, 257-265.	1.8	16
167	Mechanical Behaviour of a Porous Chalk and Water/Chalk Interaction. Part Ii: Numerical Modelling. Oil and Gas Science and Technology, 2000, 55, 599-609.	1.4	16
168	On the incremental approach for nonlinear homogenization of composite and influence of isotropization. Computational Materials Science, 2009, 46, 447-451.	3.0	16
169	Experimental and micro-mechanical analysis of the mechanical and transport properties of mortar containing heat-induced micro-cracks. Cement and Concrete Composites, 2010, 32, 678-685.	10.7	16
170	Multi-scale modeling of time-dependent behavior of claystones with a viscoplastic compressible porous matrix. Mechanics of Materials, 2014, 79, 25-34.	3.2	16
171	A micro–macro model for porous geomaterials with inclusion debonding. International Journal of Damage Mechanics, 2015, 24, 1026-1046.	4.2	16
172	A micromechanical model for the elastic–plastic behavior of porous rocks. Computers and Geotechnics, 2015, 70, 130-137.	4.7	16
173	Numerical study of a concrete target under the penetration of rigid projectile using an elastoplastic damage model. Engineering Structures, 2016, 111, 525-537.	5.3	16
174	A micro-mechanics based viscoplastic model for clayey rocks. Computers and Geotechnics, 2017, 89, 92-102.	4.7	16
175	An approximate strength criterion of porous materials with a pressure sensitive and tension-compression asymmetry matrix. International Journal of Engineering Science, 2018, 132, 1-15.	5.0	16
176	Numerical modeling of deformation and damage around underground excavation by phase-field method with hydromechanical coupling. Computers and Geotechnics, 2021, 138, 104369.	4.7	16
177	Frequent Intra-Subtype Recombination among HIV-1 Circulating in Tanzania. PLoS ONE, 2013, 8, e71131.	2.5	16
178	A constitutive model for anisotropic clay-rich rocks considering micro-structural composition. International Journal of Rock Mechanics and Minings Sciences, 2022, 151, 105029.	5.8	16
179	Thermo-hydro-mechanical modelling of an in situ heating experiment. Geotechnique, 2007, 57, 845-855.	4.0	15
180	A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials. Comptes Rendus - Mecanique, 2008, 336, 320-328.	2.1	15

#	Article	IF	CITATIONS
181	Prediction of elastic compressibility of rock material with soft computing techniques. Applied Soft Computing Journal, 2014, 22, 118-125.	7.2	15
182	Three-dimensional Reconstruction of Block Shape Irregularity and its Effects on Block Impacts Using an Energy-Based Approach. Rock Mechanics and Rock Engineering, 2018, 51, 1173-1191.	5.4	15
183	Effect of plastic deformation on hydraulic fracturing with extended element method. Acta Geotechnica, 2019, 14, 2083-2101.	5.7	15
184	Numerical homogenization of elastic properties and plastic yield stress of rock-like materials with voids and inclusions at same scale. European Journal of Mechanics, A/Solids, 2020, 81, 103958.	3.7	15
185	Factors Associated with Problem Drinking among Women Employed in Food and Recreational Facilities in Northern Tanzania. PLoS ONE, 2013, 8, e84447.	2.5	15
186	Micromechanical analysis of the nonlinear behavior of porous geomaterials based on the fast Fourier transform. Computers and Geotechnics, 2012, 46, 69-74.	4.7	14
187	A micromechanical modeling of ductile behavior of a porous chalk: Formulation, identification, and validation. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36, 1245-1263.	3.3	14
188	Multiscale modeling of cohesive geomaterials with a polycrystalline approach. Mechanics of Materials, 2014, 69, 132-145.	3.2	14
189	Study on the hydromechanical behavior of single fracture under normal stresses. KSCE Journal of Civil Engineering, 2014, 18, 1641-1649.	1.9	14
190	A multi-scale model of plasticity and damage for rock-like materials with pores and inclusions. International Journal of Rock Mechanics and Minings Sciences, 2021, 138, 104579.	5.8	14
191	Analysis of Local Creep Strain Field and Cracking Process in Claystone by X-Ray Micro-Tomography and Digital Volume Correlation. Rock Mechanics and Rock Engineering, 2021, 54, 1937-1952.	5.4	14
192	An improved hydromechanical model for particle flow simulation of fractures in fluid-saturated rocks. International Journal of Rock Mechanics and Minings Sciences, 2021, 147, 104870.	5.8	14
193	Prediction of TBM cutterhead speed and penetration rate for high-efficiency excavation of hard rock tunnel using CNN-LSTM model with construction big data. Arabian Journal of Geosciences, 2022, 15, 1.	1.3	14
194	Micromechanics approach to poroelastic behavior of a jointed rock. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 111-129.	3.3	13
195	Incremental variational approach for time dependent deformation in clayey rock. International Journal of Plasticity, 2015, 64, 88-103.	8.8	13
196	A numerical damage model for initially anisotropic materials. International Journal of Solids and Structures, 2016, 100-101, 245-256.	2.7	13
197	A micromechanical model for the elasto-viscoplastic and damage behavior of a cohesive geomaterial. Physics and Chemistry of the Earth, 2008, 33, S416-S421.	2.9	12
198	An isotropic unilateral damage model coupled with frictional sliding for quasi-brittle materials. Mechanics Research Communications, 2013, 53, 31-35.	1.8	12

#	Article	IF	CITATIONS
199	Stability analysis of a large landslide in hydropower engineering. Natural Hazards, 2014, 70, 527-548.	3.4	12
200	A micromechanics-based creep damage model for brittle rocks. European Journal of Environmental and Civil Engineering, 2015, 19, s1-s14.	2.1	12
201	Micromechanical modelling of short- and long-term behavior of saturated quasi-brittle rocks. Mechanics of Materials, 2020, 142, 103298.	3.2	12
202	A micro-mechanics-based elastoplastic friction-damage model for brittle rocks and its application in deformation analysis of the left bank slope of Jinping I hydropower station. Acta Geotechnica, 2020, 15, 3443-3460.	5.7	12
203	An elastoplastic damage model for semi-brittle rocks. Geomechanics and Geoengineering, 2007, 2, 253-267.	1.8	11
204	Modelling of plastic deformation and damage in cementâ€based material subjected to desiccation. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35, 1877-1898.	3.3	11
205	3D numerical modelling thermo-hydromechanical behaviour of underground storages in clay rock. Tunnelling and Underground Space Technology, 2012, 30, 93-109.	6.2	11
206	Influence of pore pressure on plastic deformation and strength of limestone under compressive stress. Acta Geotechnica, 2019, 14, 535-545.	5.7	11
207	Deformation and mechanical properties of rock: effect of hydromechanical coupling under unloading conditions. Bulletin of Engineering Geology and the Environment, 2020, 79, 5517-5534.	3.5	11
208	Shakedown analysis of a hollow sphere by interior-point method with non-linear optimization. International Journal of Mechanical Sciences, 2020, 175, 105515.	6.7	11
209	A Heuristic Elastoplastic Damage Constitutive Modeling Method for Geomaterials: From Strength Criterion to Analytical Full-Spectrum Stress–Strain Curves. International Journal of Geomechanics, 2021, 21, .	2.7	11
210	Poroplastic damage modeling of unsaturated cement-based materials. Mechanics Research Communications, 2009, 36, 906-915.	1.8	10
211	A micromechanical analysis of elastoplastic behavior of porous materials. Mechanics Research Communications, 2011, 38, 437-442.	1.8	10
212	An anisotropic damage–plasticity model for saturated quasiâ€brittle materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 1691-1710.	3.3	10
213	An experimental study of crack growth in claystones. European Journal of Environmental and Civil Engineering, 2014, 18, 307-319.	2.1	10
214	An elastic–plastic model for porous rocks with two populations of voids. Computers and Geotechnics, 2016, 76, 194-200.	4.7	10
215	A coupled elastoplastic and visco-plastic damage model for hard clay and its application for the underground gallery excavation. Underground Space (China), 2017, 2, 60-72.	7.5	10
216	Shear strength of interface between high-performance concrete and claystone in the context of a French radioactive waste repository project. Geotechnique, 2021, 71, 534-547.	4.0	10

#	Article	IF	CITATIONS
217	Insight of molecular simulation to better assess deformation and failure of clay-rich rocks in compression and extension. International Journal of Rock Mechanics and Minings Sciences, 2021, 138, 104589.	5.8	10
218	Numerical study of shrinkage and heating induced cracking in concrete materials and influence of inclusion stiffness with Peridynamics method. Computers and Geotechnics, 2021, 133, 103998.	4.7	10
219	Friction-damage coupled models and macroscopic strength criteria for ice-saturated frozen silt with crack asperity variation by a micromechanical approach. Engineering Geology, 2021, 294, 106405.	6.3	10
220	Contribution of atomistic study to better understand water saturation effect on mechanical behavior of clayey rocks in triaxial compression. Computers and Geotechnics, 2022, 146, 104738.	4.7	10
221	A numerical solution for a thermo-hydro-mechanical coupling problem with heat convection. International Journal of Rock Mechanics and Minings Sciences, 1997, 34, 163-166.	5.8	9
222	Multi-scale modeling for inelastic behavior of a cohesive geomaterial. Mechanics Research Communications, 2009, 36, 673-681.	1.8	9
223	A two scale model of porous rocks with Drucker–Prager matrix: Application to a sandstone. Mechanics Research Communications, 2011, 38, 602-606.	1.8	9
224	A non-uniform transformation field analysis for frictional cohesive geomaterials. European Journal of Mechanics, A/Solids, 2013, 42, 97-111.	3.7	9
225	Experimental investigation and constitutive modelling of creep-damage behaviours in monzogranite. European Journal of Environmental and Civil Engineering, 2015, 19, s54-s69.	2.1	9
226	A numerical study of effective mechanical behaviors of rock like materials based on Fast Fourier Transform. Mechanics of Materials, 2016, 92, 275-288.	3.2	9
227	Experimental study and modeling of hydromechanical behavior of concreteÂfracture. Water Science and Engineering, 2017, 10, 97-106.	3.2	9
228	Evolution of bulk compressibility and permeability of granite due to thermal cracking. Geotechnique, 2019, 69, 906-916.	4.0	9
229	A microstructure-based constitutive model for cement paste with chemical leaching effect. Mechanics of Materials, 2020, 150, 103571.	3.2	9
230	Prediction of plastic yield surface for porous materials by a machine learning approach. Materials Today Communications, 2020, 25, 101477.	1.9	9
231	A phase-field modeling method for the mixed-mode fracture of brittle materials based on spectral decomposition. Engineering Fracture Mechanics, 2021, 242, 107473.	4.3	9
232	Stress-induced microcracking in rock and its influence on wellbore stability analysis. International Journal of Rock Mechanics and Mining Sciences, 1994, 31, 149-155.	0.0	8
233	Time dependent continuous damage model for deformation and failure of brittle rock. International Journal of Rock Mechanics and Minings Sciences, 1997, 34, 285.e1-285.e13.	5.8	8
234	A discrete thermodynamic approach for modeling anisotropic coupled plasticity-damage behavior in geomaterials. Comptes Rendus - Mecanique, 2008, 336, 376-383.	2.1	8

#	Article	IF	CITATIONS
235	Deformation and Permeability Evolution of Petroleum Cement Paste Subjected to Chemical Degradation Under Temperature. Transport in Porous Media, 2011, 86, 719-736.	2.6	8
236	Micromechanical modeling of mortar as a matrixâ€inclusion composite with drying effects. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 1034-1047.	3.3	8
237	In vivo Radiosensitization of Human Glioma U87 Cells Induced by Upregulated Expression of DUSP-2 after Treatment with Curcumin. Current Signal Transduction Therapy, 2015, 10, 119-125.	0.5	8
238	Modelling of hydro-mechanical coupling and transport in densely fractured rock mass. European Journal of Environmental and Civil Engineering, 2015, 19, 521-538.	2.1	8
239	Macroscopic criteria for Green type porous materials with spheroidal voids: application to double porous materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41, 1453-1473.	3.3	8
240	A micro-mechanics-based elastic–plastic model for porous rocks: applications to sandstone and chalk. Acta Geotechnica, 2018, 13, 329.	5.7	8
241	Digital Volume Correlation Applied to X-ray Micro-Tomography Images in Uniaxial Creep Tests on Anisotropic Clayey Rock. Applied Sciences (Switzerland), 2020, 10, 4898.	2.5	8
242	A micromechanics-based enhanced plastic damage model including localization analysis for heterogeneous geomaterials. Computers and Geotechnics, 2020, 122, 103512.	4.7	8
243	Numerical study of time-dependent deformation and cracking in brittle rocks with phase-field method and application to slope instability analysis. International Journal of Rock Mechanics and Minings Sciences, 2022, 155, 105144.	5.8	8
244	Poroelastic behaviour of saturated brittle rock with anisotropic damage. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24, 1139-1154.	3.3	7
245	Numerical implementation of a recent improved Gurson-type model and application to ductile fracture. Computational Materials Science, 2010, 47, 901-906.	3.0	7
246	Improved slope safety analysis by new Druker-Prager type criterion. Journal of Central South University, 2012, 19, 1132-1137.	3.0	7
247	Modeling of Short- and Long-Term Chemomechanical Coupling Behavior of Cement-Based Materials. Journal of Engineering Mechanics - ASCE, 2014, 140, 206-218.	2.9	7
248	An Experimental and Numerical Investigation of the Mechanical Behaviour of a Concrete and of its Permeability Under Deviatoric Loading. Transport in Porous Media, 2014, 102, 427-454.	2.6	7
249	A numerical analysis of interface damage effect on mechanical properties of composite materials. Mechanics Research Communications, 2014, 62, 18-24.	1.8	7
250	A micromechanical study of drying and carbonation effects in cement-based materials. Continuum Mechanics and Thermodynamics, 2015, 27, 49-61.	2.2	7
251	Evolution of mechanical behaviour of mortar with re-saturation after drying. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3343-3355.	3.1	7
252	The 100 Top-Cited Articles Published in Emergency Medicine Journals: A Bibliometric Analysis. Hong Kong Journal of Emergency Medicine, 2016, 23, 329-339.	0.6	7

#	Article	IF	CITATIONS
253	A micromechanicsâ€based model for concrete materials subjected to carbonation. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40, 1203-1218.	3.3	7
254	Plastic modeling of porous rocks in drained and undrained conditions. Computers and Geotechnics, 2020, 117, 103277.	4.7	7
255	A method to experimentally investigate injection-induced activation of fractures. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12, 1326-1332.	8.1	7
256	Experimental and numerical investigation of microstructure effect on the mechanical behavior and failure process of brittle rocks. Computers and Geotechnics, 2020, 125, 103639.	4.7	7
257	A homogenized macroscopic criterion for shakedown analysis of ductile porous media with kinematical hardening matrix. European Journal of Mechanics, A/Solids, 2020, 82, 104015.	3.7	7
258	Modeling of damage and cracking in heterogeneous rock-like materials by phase-field method. Mechanics Research Communications, 2021, 114, 103612.	1.8	7
259	Influences of structural anisotropy and heterogeneity on three-dimensional strain fields and cracking patterns of a clay-rich rock. Acta Geotechnica, 2021, 16, 2175-2187.	5.7	7
260	Experimental investigations on the tensile behaviour of granite after heating and water-cooling treatment. Bulletin of Engineering Geology and the Environment, 2021, 80, 5909-5920.	3.5	7
261	An elastoplastic damage constitutive model for rock-like materials with a fractional plastic flow rule. International Journal of Rock Mechanics and Minings Sciences, 2022, 156, 105140.	5.8	7
262	Application of a micromechanical model to cavity excavation analysis in argillite. International Journal of Rock Mechanics and Minings Sciences, 2009, 46, 905-917.	5.8	6
263	A self-consistent approach for micro-macro modeling of elastic-plastic deformation in polycrystalline geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39, 1735-1752.	3.3	6
264	Numerical analysis of concrete under a wide range of stress and with different saturation condition. Materials and Structures/Materiaux Et Constructions, 2015, 48, 295-306.	3.1	6
265	A numerical study of mechanical behavior of a cement paste under mechanical loading and chemical leaching. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41, 1848-1869.	3.3	6
266	An upscaled model for elastoplastic behavior of the Callovo-Oxfordian argillite. Computers and Geotechnics, 2019, 112, 81-92.	4.7	6
267	A multiscale elastoplastic constitutive model for geomaterials with a porous matrix-inclusion microstructure. Computers and Geotechnics, 2020, 126, 103683.	4.7	6
268	Modification of poroelastic properties in granite by heating–cooling treatment. Acta Geotechnica, 2021, 16, 2165-2173.	5.7	6
269	A variational-based homogenization model for plastic shakedown analysis of porous materials with a large range of porosity. International Journal of Mechanical Sciences, 2021, 199, 106429.	6.7	6
270	Comprehensive assessment and global stabilisation measures of a large landslide in hydropower engineering. European Journal of Environmental and Civil Engineering, 2013, 17, 154-175.	2.1	5

4

#	Article	IF	CITATIONS
271	HIV-1 pol Diversity among Female Bar and Hotel Workers in Northern Tanzania. PLoS ONE, 2014, 9, e102258.	2.5	5
272	Influence of time-dependence on failure of echelon rock joints through a novel DEM model. European Journal of Environmental and Civil Engineering, 2015, 19, s108-s118.	2.1	5
273	A micromechanical model for porous materials with a reinforced matrix. Mechanics Research Communications, 2016, 72, 81-86.	1.8	5
274	About the interest of using gas to evaluate permeability of damaged granite. European Journal of Environmental and Civil Engineering, 2017, 21, 238-247.	2.1	5
275	Bridging meso- and microscopic anisotropic unilateral damage formulations for microcracked solids. Comptes Rendus - Mecanique, 2017, 345, 281-292.	2.1	5
276	Application of continuum damage mechanics in hydraulic fracturing simulations. , 2017, , 197-212.		5
277	Elastoplastic modelling the creep behaviour of cataclastic rock under multi-stage deviatoric stress. European Journal of Environmental and Civil Engineering, 2018, 22, 650-665.	2.1	5
278	Numerical modeling of the elastoplastic damage behavior of dry and saturated concrete targets subjected to rigid projectile penetration. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42, 312-338.	3.3	5
279	A micromechanicalâ€based elastoâ€viscoplastic model for the Callovoâ€Oxfordian argillite: Algorithms, validations, and applications. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44, 183-207.	3.3	5
280	A Semi-empirical Failure Criterion for Brittle Rocks. Rock Mechanics and Rock Engineering, 2020, 53, 4271-4277.	5.4	5
281	A three-scale micro-mechanical model for elastic–plastic damage modeling of shale rocks. Acta Geotechnica, 2020, 15, 3525-3543.	5.7	5
282	A micro-mechanical constitutive model for heterogeneous rocks with non-associated plastic matrix as implicit standard materials. Computers and Geotechnics, 2021, 133, 104026.	4.7	5
283	Experimental study of gas permeability evolution in tight sandstone with damage and cracking along various stress loading paths. Bulletin of Engineering Geology and the Environment, 2021, 80, 7847-7863.	3.5	5
284	Creep Deformation and Gas Permeability in Fractured Claystone Under Various Stress States. Rock Mechanics and Rock Engineering, 2022, 55, 1843-1853.	5.4	5
285	Numerical study on the dynamic behavior of rock avalanche: influence of cluster shape, size and gradation. Acta Geotechnica, 2023, 18, 299-318.	5.7	5
286	A new incremental variational micro-mechanical model for porous rocks with a pressure-dependent and compression–tension asymmetric plastic solid matrix. International Journal of Rock Mechanics and Minings Sciences, 2022, 153, 105059.	5.8	5
287	Elasto-viscoplastic modelling of a porous chalk. Mechanics Research Communications, 1994, 21, 63-75.	1.8	4

Plastic Modelling Of Compressible Porous Chalk and Effect of Water Injection. , 1998, , .

#	Article	IF	CITATIONS
289	Anisotropic damage coupled modeling of saturated porous rock. Science China Technological Sciences, 2010, 53, 2681-2690.	4.0	4
290	Experimental study and constitutive modelling of elastoâ€plastic damage in heatâ€treated mortar. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34, 357-382.	3.3	4
291	A randomized controlled trial of standard versus intensified tuberculosis diagnostics on treatment decisions by physicians in Northern Tanzania. BMC Infectious Diseases, 2014, 14, 89.	2.9	4
292	Modeling of viscoplastic deformation in geomaterials with a polycrystalline approach. International Journal of Rock Mechanics and Minings Sciences, 2014, 72, 182-190.	5.8	4
293	Micromechanical modeling of the elasto-viscoplastic behavior of granite. Comptes Rendus - Mecanique, 2015, 343, 121-132.	2.1	4
294	Influence of inclusion rigidity on shrinkage induced micro-cracking of cementitious materials. Cement and Concrete Composites, 2020, 114, 103773.	10.7	4
295	Water Saturation Induced Strength Degradation of Callovo-Oxfordian Claystone. Springer Series in Geomechanics and Geoengineering, 2017, , 11-17.	0.1	4
296	Experimental Investigation and Semi-Analytical Simulation of Instantaneous and Time-Dependent Damage Behaviors of Beishan Granite. Rock Mechanics and Rock Engineering, 2022, 55, 2341-2352.	5.4	4
297	Validation of an elastoplastic model for chalk. Computers and Geotechnics, 1990, 9, 257-272.	4.7	3
298	Une étude expérimentale du comportement poromécanique d'une roche fragile saturée. Revue Européenne De Génie Civil, 2000, 4, 109-142.	0.0	3
299	Far-lateral approach assisted by multimodal neuronavigation and electrophysiological monitoring technique for complex clival tumor. British Journal of Neurosurgery, 2015, 29, 597-599.	0.8	3
300	Multiscale Study of the Nonlinear Behavior of Heterogeneous Clayey Rocks Based on the FFT Method. Rock Mechanics and Rock Engineering, 2015, 48, 417-426.	5.4	3
301	Influences of chemical leaching on elastic and plastic properties of cement-based materials. European Journal of Environmental and Civil Engineering, 2017, 21, 696-711.	2.1	3
302	Numerical modelling of long-term stability of the rock joint. European Journal of Environmental and Civil Engineering, 2018, 22, s415-s433.	2.1	3
303	Creep Strain and Permeability Evolution in Cracked Granite Subjected to Triaxial Stress and Reactive Flow. Geofluids, 2018, 2018, 1-10.	0.7	3
304	Experimental study of concrete creep under thermal-mechanical-hydric conditions. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	3
305	Modélisation du comportement d'une craie blanche très poreuse et validation. Revue Française De Géotechnique, 1988, , 35-46.	0.1	3
306	Application de la théorie des problèmes inverses à l'estimation des paramètres des modèles rhéologiques. Revue Française De Géotechnique, 1991, , 75-80.	0.1	3

#	Article	IF	CITATIONS
307	Numerical modelling the influence of water content on the mechanical behaviour of concrete under high confining pressures. Mechanics Research Communications, 2022, 119, 103819.	1.8	3
308	Study of massive water injection by thermoporomechanical coupling model. Computers and Geotechnics, 1993, 15, 105-121.	4.7	2
309	Micromechanics based modeling of the Callovo-Oxfordian argillite mechanical behavior. Mecanique Et Industries, 2007, 8, 225-234.	0.2	2
310	The Current State of Open Access in Journals Sponsored by the China Association for Science and Technology. Journal of Scholarly Publishing, 2013, 44, 373-383.	0.6	2
311	Numerical study of the interaction between adjacent galleries in a high-level radioactive waste repository. International Journal of Rock Mechanics and Minings Sciences, 2014, 71, 405-417.	5.8	2
312	The Effect of Pre-heating Treatment and Water–Cement Ratio on the Shearing Behavior and Permeability of Granite–Cement Interface Samples. Rock Mechanics and Rock Engineering, 2021, 54, 5639-5650.	5.4	2
313	A bipotential-based macroscopic fatigue criterion of porous materials with a pressure-sensitive and non-associated plastic solid matrix and comparison with numerical simulation. Mechanics of Materials, 2022, 165, 104161.	3.2	2
314	Comparaison des concepts et prédictions des modÃ les. Revue Européenne De Génie Civil, 2002, 6, 131-14	4 3 0.0	1
315	Mise en œuvre d'une modélisation élasto-plastique endommageable du béton. Revue Européenne De Génie Civil, 2003, 7, 583-594.	0.0	1
316	Couplage comportement mécanique et perméabilité. Revue Européenne De Génie Civil, 2007, 11, 827	7-837.	1
317	Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir. , 2008, , .		1
318	Multiscale modeling of the macroscopic size-dependent effects of interfacial transition zones in concrete and their damage. Procedia Engineering, 2009, 1, 27-30.	1.2	1
319	An energy-based analysis for aggregate size effect on mechanical strength of cement-based materials. Engineering Fracture Mechanics, 2013, 102, 207-217.	4.3	1
320	A Micromechanical Model for Time Dependent Behavior Related to Subcritical Damage in Quasi Brittle Rocks. Springer Series in Geomechanics and Geoengineering, 2013, , 323-326.	0.1	1
321	Stress-induced permeability evolutions and erosion damage of porous rocks. , 2017, , 63-92.		1
322	Multiscale modeling approaches and micromechanics of porous rocks. , 2017, , 215-232.		1
323	Anisotropic poroplasticity in saturated porous media, effect of confining pressure, and elevated temperature. , 2017, , 27-46.		1
324	Parametric study of thermo-hydro-mechanical response of claystone with consideration of steel corrosion. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9, 449-462.	8.1	1

#	Article	IF	CITATIONS
325	Triaxial Creep Induced Gas Permeability Change and Elastic Modulus Variation in Callovo-Oxfordian Argillite. , 2017, , .		1
326	A new anisotropic failure criterion for transversely isotropic solids. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 3, 89-103.	0.8	1
327	Micromechanical Poroplasiticty Damage Formulations for Saturated Microcracked Rocks. Springer Series in Geomechanics and Geoengineering, 2013, , 387-390.	0.1	1
328	Thermo-Hydromechanical Modeling in Saturated Hard Clay and Application to Nuclear Waste Storage. , 2006, , .		1
329	Couplage comportement mécanique et perméabilité. Cas d'une pâte de ciment pétrolier dégradée chimiquement à 90 °C. Revue Européenne De Génie Civil, 2007, 11, 827-837.	0.0	1
330	Molecular dynamics study on creep behavior of montmorillonite. IOP Conference Series: Earth and Environmental Science, 2021, 861, 042099.	0.3	1
331	Numerical Analysis of Damage by Phase-Field Method. , 2022, , 701-724.		1
332	Un modèle d'endommagement poroélastique pour milieux poreux saturés. Comptes Rendus De L'Academie De Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie, 1999, 327, 1305-1310.	0.1	0
333	Elastoplasticité et endommagement dans un matériau cimentaire en cours de dessiccation. Revue Européenne De Génie Civil, 2006, 10, 405-421.	0.0	0
334	A new model of plasticity-damage coupling for saturated porous media. , 2007, , .		0
335	Non-linear Micro-cracked Geomaterials: Anisotropic Damage and Coupling with Plasticity. , 0, , 177-201.		0
336	A Multiscale Anisotropic Poroplasticity Damage Model for Cracked Solids. , 2013, , .		0
337	Homogenization-Based Poroplasticity Damage Formulations for Cohesive-Frictional Geomaterials. , 2013, , .		0
338	Numerical simulation of rock failure process using improved rigid body spring method. , 2013, , .		0
339	A Micro-Macro Model for the Mortar with Drying Effect. , 2013, , .		0
340	Coverage of Journals from Mainland China in the Field of Emergency Medicine by Major International Biomedicine Databases. Hong Kong Journal of Emergency Medicine, 2015, 22, 41-45.	0.6	0
341	Micromechanical Modeling of Elastoplastic Behavior of a Shale Gas Reservoir. , 2017, , .		0
342	Time-dependent behaviour of an oil-well cement paste subjected to leaching under temperature. European Journal of Environmental and Civil Engineering, 2021, 25, 1962-1976.	2.1	0

#	Article	IF	CITATIONS
343	Numerical Analysis of Damage by Phase-Field Method. , 2021, , 1-24.		0
344	Strength Behaviour of a High-Performance Concrete Under Drying. RILEM Bookseries, 2021, , 155-164.	0.4	0
345	Effects of high temperatures and unloading confining pressures on granite. Environmental Geotechnics, 2024, 11, 51-61.	2.3	0
346	Investigation of Parameter Influence on Damage Evolution via PD-FEM Coupling Method. Lecture Notes in Civil Engineering, 2021, , 672-679.	0.4	0
347	Drying of concrete: modelling of a hydric damage. Materials and Structures/Materiaux Et Constructions, 2003, 36, 12-21.	3.1	0
348	Elasto-Viscoplastic Modelling of Porous Rock under High Confining Pressure. , 1991, , 266-269.		0
349	Chinese research status in emergency medicine journals: a bibliometric analysis based on Science Citation Index Expanded database. Signa Vitae, 2016, 11, 103.	0.3	0
350	Lateral Decompression Behaviors of a Hard Claystone in Excavation-Damaged Zone of Galleries. Springer Series in Geomechanics and Geoengineering, 2018, , 1702-1706.	0.1	0
351	Application of Continuum Damage Mechanics in Hydraulic Fracturing Simulations. , 2020, , 1-19.		0
352	Application of Continuum Damage Mechanics in Hydraulic Fracturing Simulations. , 2022, , 751-768.		0
353	Micromechanics-Based Models for Induced Damage in Rock-Like Materials. , 2022, , 725-749.		О