

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/55695/publications.pdf Version: 2024-02-01

WEN XI

#	Article	IF	CITATIONS
1	Design of multifunctional near-infrared organic heterojunction and double hole transport layer to improve efficiency and stability of perovskite solar cells. Chemical Engineering Journal, 2022, 431, 133186.	6.6	5
2	Flexible double narrowband near-infrared photodetector based on PMMA/core–shell upconversion nanoparticle composites. Journal of Rare Earths, 2022, 40, 211-217.	2.5	7
3	Two-terminal organic optoelectronic synapse based on poly(3-hexylthiophene) for neuromorphic computing. Organic Electronics, 2022, 100, 106390.	1.4	10
4	Aluminum-doped lead-free double perovskite Cs2AgBiCl6 nanocrystals with ultrahigh stability towards white light emitting diodes. Materials Research Bulletin, 2022, 147, 111645.	2.7	21
5	In situ preparation of two-dimensional ytterbium ions doped all-inorganic perovskite nanosheets for high-performance visual dual-bands photodetectors. Nano Energy, 2022, 93, 106815.	8.2	22
6	Synergistic Regulation Effect of Nitrate and Calcium Ions for Highly Luminescent and Robust α sPbI ₃ Perovskite. Small, 2022, 18, e2106147.	5.2	7
7	Efficient Radiative Enhancement in Perovskite Lightâ€Emitting Devices through Involving a Novel Sandwich Localized Surface Plasmon Structure. Small Methods, 2022, 6, e2200163.	4.6	9
8	Highly Stable and Efficient Mn ²⁺ Doping Zero-Dimension Cs ₂ Zn _{<i>x</i>} Pb _{1–<i>x</i>} Cl ₄ Alloyed Nanorods toward White Electroluminescent Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2379-2387.	2.1	5
9	A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. Light: Science and Applications, 2022, 11, 91.	7.7	61
10	Tunable concentration-dependent upconversion and downconversion luminescence in NaYF ₄ : Yb ³⁺ , Er ³⁺ @ NaYF ₄ : Yb ³⁺ , Nd ³⁺ core-shell nanocrystals for a dual-mode anti-counterfeiting imaging application. Optics Letters, 2022, 47, 2814.	1.7	3
11	Supersensitive sensing based on upconversion nanoparticles through cascade photon amplification at single-particle level. Sensors and Actuators B: Chemical, 2022, 367, 132125.	4.0	3
12	Narrowband Near-Infrared Photodetectors Based on Perovskite Waveguide Devices. Journal of Physical Chemistry Letters, 2022, 13, 6057-6063.	2.1	7
13	Double Stopband Bilayer Photonic Crystal Based Upconversion Fluorescence PSA Sensor. Sensors and Actuators B: Chemical, 2021, 326, 128816.	4.0	26
14	Bright red YCl3-promoted CsPbI3 perovskite nanorods towards efficient light-emitting diode. Nano Energy, 2021, 81, 105615.	8.2	33
15	Mn2+ ions doped lead-free zero-dimensional K3SbCl6 perovskite nanocrystals towards white light emitting diodes. Chemical Engineering Journal, 2021, 413, 127415.	6.6	33
16	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	6.4	37
17	Carrier dynamics of CdS/MoS2 heterostructure nanocrystal films affected by annealing effect. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	1
18	Broadband Ultraviolet Photodetectors Based on Cerium Doped Lead-Free Cs ₃ MnBr ₅ Metal Halide Nanocrystals. ACS Sustainable Chemistry and Engineering, 2021, 9, 4980-4987.	3.2	29

#	Article	IF	CITATIONS
19	Artificial Synapse Based on Organic–Inorganic Hybrid Perovskite with Electric and Optical Modulation. Advanced Electronic Materials, 2021, 7, 2100291.	2.6	34
20	Highly controllable synthesis of MAPbI3 perovskite nanocrystals with long carrier lifetimes and narrow band gap for application in photodetectors. Journal of Alloys and Compounds, 2021, 872, 159589.	2.8	16
21	Ceriumâ€Doped Perovskite Nanocrystals for Extremely Highâ€Performance Deepâ€Ultraviolet Photoelectric Detection. Advanced Optical Materials, 2021, 9, 2100423.	3.6	12
22	Self-powered UV photodetectors based on CsPbCl3 nanowires enabled by the synergistic effect of acetate and lanthanide ion passivation. Chemical Engineering Journal, 2021, 426, 131310.	6.6	28
23	Plasmonic gold nanorods decorated Ti3C2 MXene quantum dots-interspersed nanosheet for full-spectrum photoelectrochemical water splitting. Chemical Engineering Journal, 2021, 426, 130818.	6.6	23
24	An air-stable artificial synapse based on a lead-free double perovskite Cs ₂ AgBiBr ₆ film for neuromorphic computing. Journal of Materials Chemistry C, 2021, 9, 5706-5712.	2.7	56
25	Ni ²⁺ and Pr ³⁺ Co-doped CsPbCl ₃ perovskite quantum dots with efficient infrared emission at 1300 nm. Nanoscale, 2021, 13, 16598-16607.	2.8	13
26	Multi-wavelength pumped upconversion enhancement induced by Cu _{2-x} S plasmonic nanoparticles in NaYF ₄ @Cu _{2-x} S core–shell structure. Optics Letters, 2021, 46, 5.	1.7	6
27	Introducing ytterbium acetate to luminescent CsPbCl ₃ nanocrystals for enhanced sensitivity of Cu ²⁺ detection. Inorganic Chemistry Frontiers, 2021, 9, 44-50.	3.0	8
28	Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of Silicon photodetectors with external quantum efficiency exceeding 70%. Nano Energy, 2020, 78, 105278.	8.2	73
29	Strong upconverting and downshifting emission of Mn ²⁺ ions in a Yb,Tm:NaYF ₄ @NaLuF ₄ /Mn:CsPbCl ₃ core/shell heterostructure towards dual-model anti-counterfeiting. Chemical Communications, 2020, 56, 14609-14612.	2.2	11
30	Highly efficient ligand-modified manganese ion doped CsPbCl3 perovskite quantum dots for photon energy conversion in silicon solar cells. Nanoscale, 2020, 12, 18621-18628.	2.8	14
31	Efficient chromium ion passivated CsPbCl ₃ :Mn perovskite quantum dots for photon energy conversion in perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 12323-12329.	2.7	23
32	Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection. Light: Science and Applications, 2020, 9, 184.	7.7	60
33	Incorporating of Lanthanides Ions into Perovskite Film for Efficient and Stable Perovskite Solar Cells. Small, 2020, 16, e2001770.	5.2	55
34	High fluorescence LaOBr/coumarin organic–inorganic composite nanomaterials for ultra-sensitive Fe ³⁺ sensing, fluorescence imaging and water-based ink anti-counterfeiting applications. Journal of Materials Chemistry C, 2020, 8, 13733-13742.	2.7	8
35	High brightness blue light-emitting diodes based on CsPb(Cl/Br) ₃ perovskite QDs with phenethylammonium chloride passivation. Nanoscale, 2020, 12, 11728-11734.	2.8	42
36	Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2003295.	7.8	100

#	Article	IF	CITATIONS
37	Samarium-Doped Metal Halide Perovskite Nanocrystals for Single-Component Electroluminescent White Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2131-2139.	8.8	124
38	Localized surface plasmon resonances in self-doped copper chalcogenide binary nanocrystals and their emerging applications. Nano Today, 2020, 33, 100892.	6.2	53
39	Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals. Nano Energy, 2020, 76, 105103.	8.2	40
40	Bright Blue Light Emission of Ni ²⁺ Ion-Doped CsPbCl <i>_x</i> Br _{3–<i>x</i>} Perovskite Quantum Dots Enabling Efficient Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 14195-14202.	4.0	118
41	Unraveling the Impact of Gold(I)–Thiolate Motifs on the Aggregationâ€Induced Emission of Gold Nanoclusters. Angewandte Chemie, 2020, 132, 10020-10025.	1.6	36
42	Unraveling the Impact of Gold(I)–Thiolate Motifs on the Aggregationâ€Induced Emission of Gold Nanoclusters. Angewandte Chemie - International Edition, 2020, 59, 9934-9939.	7.2	196
43	Cesium tin halide perovskite quantum dots as an organic photoluminescence probe for lead ion. Journal of Luminescence, 2019, 216, 116711.	1.5	21
44	Ce6-C6-TPZ co-loaded albumin nanoparticles for synergistic combined PDT-chemotherapy of cancer. Journal of Materials Chemistry B, 2019, 7, 5797-5807.	2.9	21
45	Impact of Host Composition, Codoping, or Tridoping on Quantum-Cutting Emission of Ytterbium in Halide Perovskite Quantum Dots and Solar Cell Applications. Nano Letters, 2019, 19, 6904-6913.	4.5	100
46	Semiconductor plasmon enhanced monolayer upconversion nanoparticles for high performance narrowband near-infrared photodetection. Nano Energy, 2019, 61, 211-220.	8.2	71
47	Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sensors and Actuators B: Chemical, 2019, 289, 131-137.	4.0	101
48	H2O2 decomposition catalyzed by strontium cobaltites and their application in Rhodamine B degradation in aqueous medium. Journal of Materials Science, 2019, 54, 8216-8225.	1.7	7
49	Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles. Scientific Reports, 2019, 9, 5094.	1.6	2
50	Europium-Doped Lead-Free Cs ₃ Bi ₂ Br ₉ Perovskite Quantum Dots and Ultrasensitive Cu ²⁺ Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 8397-8404.	3.2	114
51	Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites. Biomaterials, 2019, 201, 42-52.	5.7	67
52	Enhancing the exciton emission of CsPbCl3 perovskite quantum dots by incorporation of Rb+ ions. Materials Research Bulletin, 2019, 112, 142-146.	2.7	36
53	Broadband Plasmonic Antenna Enhanced Upconversion and Its Application in Flexible Fingerprint Identification. Advanced Optical Materials, 2018, 6, 1701119.	3.6	32
54	Plasmon multiwavelength-sensitized luminescence enhancement of highly transparent Ag/YVO4:Eu3+/PMMA film. Journal of Luminescence, 2018, 200, 158-163.	1.5	14

#	Article	IF	CITATIONS
55	Photoluminescence enhancement of carbon dots induced by hybrids of photonic crystals and gold–silver alloy nanoparticles. Journal of Materials Chemistry C, 2018, 6, 147-152.	2.7	22
56	Ratiometric photoluminescence sensing based on Ti ₃ C ₂ MXene quantum dots as an intracellular pH sensor. Nanoscale, 2018, 10, 1111-1118.	2.8	241
57	Impurity Ions Codoped Cesium Lead Halide Perovskite Nanocrystals with Bright White Light Emission toward Ultraviolet–White Light-Emitting Diode. ACS Applied Materials & Interfaces, 2018, 10, 39040-39048.	4.0	78
58	Luminescence carbon dot-based nanofibers for a water-insoluble drug release system and their monitoring of drug release. Journal of Materials Chemistry B, 2018, 6, 3579-3585.	2.9	14
59	Highly stable and water-soluble monodisperse CsPbX ₃ /SiO ₂ nanocomposites for white-LED and cells imaging. Nanotechnology, 2018, 29, 345703.	1.3	76
60	All-inorganic perovskite quantum dot/TiO ₂ inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation. Nanoscale, 2018, 10, 10505-10513.	2.8	73
61	Considerably enhanced exciton emission of CsPbCl ₃ perovskite quantum dots by the introduction of potassium and lanthanide ions. Nanoscale, 2018, 10, 14067-14072.	2.8	100
62	Plasmonic Photonic Crystals Induced Twoâ€Order Fluorescence Enhancement of Blue Perovskite Nanocrystals and Its Application for Highâ€Performance Flexible Ultraviolet Photodetectors. Advanced Functional Materials, 2018, 28, 1804429.	7.8	106
63	Fine-tuning of multiple upconversion emissions by controlling the crystal phase and morphology between GdF3:Yb3+,Tm3+ and GdOF:Yb3+,Tm3+ nanocrystals. RSC Advances, 2017, 7, 2426-2434.	1.7	15
64	Size-dependent downconversion near-infrared emission of NaYF4:Yb3+,Er3+ nanoparticles. Journal of Materials Chemistry C, 2017, 5, 2451-2458.	2.7	31
65	Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb,Er Core-Shell Hybrid and its Tunable Upconversion Enhancement. Scientific Reports, 2017, 7, 41079.	1.6	33
66	Spectral and spatial characterization of upconversion luminescent nanocrystals as nanowaveguides. Nanoscale, 2017, 9, 9238-9245.	2.8	13
67	Remarkable Enhancement of Upconversion Luminescence on Cap-Ag/PMMA Ordered Platform and Trademark Anticounterfeiting. ACS Applied Materials & Interfaces, 2017, 9, 37128-37135.	4.0	33
68	A novel upconversion luminescence derived photoelectrochemical immunoassay: ultrasensitive detection to alpha-fetoprotein. Nanoscale, 2017, 9, 16357-16364.	2.8	39
69	Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells. Advanced Materials, 2017, 29, 1704149.	11.1	389
70	Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu _{2–<i>x</i>} S@SiO ₂ @Y ₂ O ₃ :Yb ³⁺ /Er <s Core–Shell Nanocomposites. ACS Applied Materials & Interfaces, 2017, 9, 35226-35233.</s 	sup>3443(sup)> 59
71	Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application. Chemistry of Materials, 2017, 29, 6799-6809.	3.2	81
72	Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. Nano Letters, 2017, 17, 8005-8011.	4.5	672

#	Article	IF	CITATIONS
73	Upconversion manipulation by local electromagnetic field. Nano Today, 2017, 17, 54-78.	6.2	103
74	Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 16559-16567.	5.2	70
75	Highly effective upconversion broad-band luminescence and enhancement in Dy2O3/Au and Sm2O3/Au composites. Journal of Luminescence, 2017, 181, 352-359.	1.5	8
76	Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers. Scientific Reports, 2016, 6, 23406.	1.6	45
77	Remarkable enhancement of upconversion luminescence on 2-D anodic aluminum oxide photonic crystals. Nanoscale, 2016, 8, 10004-10009.	2.8	28
78	Observation of Considerable Upconversion Enhancement Induced by Cu _{2–<i>x</i>} S Plasmon Nanoparticles. ACS Nano, 2016, 10, 5169-5179.	7.3	149
79	Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals. ACS Applied Materials & Interfaces, 2016, 8, 11667-11674.	4.0	71
80	Effect of Cd-phosphonate complex on the self-assembly structure of colloidal nanorods. Materials Letters, 2016, 180, 85-88.	1.3	14
81	Self-organized helical superstructure of photonic cellulose loaded with upconversion nanoparticles showing modulated luminescence. RSC Advances, 2016, 6, 76231-76236.	1.7	11
82	Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages. RSC Advances, 2016, 6, 86297-86300.	1.7	9
83	Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing. Nanotechnology, 2016, 27, 405202.	1.3	9
84	Local Field Modulation Induced Threeâ€Order Upconversion Enhancement: Combining Surface Plasmon Effect and Photonic Crystal Effect. Advanced Materials, 2016, 28, 2518-2525.	11.1	240
85	Highly Efficient LiYF ₄ :Yb ³⁺ , Er ³⁺ Upconversion Single Crystal under Solar Cell Spectrum Excitation and Photovoltaic Application. ACS Applied Materials & Interfaces, 2016, 8, 9071-9079.	4.0	151
86	NaYF ₄ :Yb ³⁺ ,Tm ³⁺ inverse opal photonic crystals and NaYF ₄ :Yb ³⁺ ,Tm ³⁺ /TiO ₂ composites: synthesis, highly improved upconversion properties and NIR photoelectric response. Journal of Materials Chemistry C, 2016, 4, 659-662.	2.7	35
87	Controlled size and morphology, and phase transition of YF ₃ :Yb ³⁺ ,Er ³⁺ nanocrystals for fine color tuning. Journal of Materials Chemistry C, 2016, 4, 331-339.	2.7	37
88	Large Upconversion Enhancement in the "Islands―Au–Ag Alloy/NaYF ₄ : Yb ³⁺ , Tm ³⁺ /Er ³⁺ Composite Films, and Fingerprint Identification. Advanced Functional Materials, 2015, 25, 5462-5471.	7.8	135
89	Chiral electronic transitions of YVO ₄ :Eu ³⁺ nanoparticles in cellulose based photonic materials with circularly polarized excitation. Journal of Materials Chemistry C, 2015, 3, 3384-3390.	2.7	54
90	Highly modified spontaneous emission in NaY(MoO ₄) ₂ :Yb ³⁺ /Er ³⁺ inverse opal photonic crystals. RSC Advances, 2015, 5, 104862-104869.	1.7	16

#	Article	IF	CITATIONS
91	Plasmonic enhancement of the upconversion fluorescence in YVO ₄ :Yb ³⁺ , Er ³⁺ nanocrystals based on the porous Ag film. Nanotechnology, 2015, 26, 145602.	1.3	14
92	ZnWO ₄ /ZnWO ₄ : Eu ³⁺ inverse opal photonic crystal scintillator: efficient phosphors in radiation detection. RSC Advances, 2015, 5, 82748-82755.	1.7	11
93	Observation of upconversion white light and ultrabroad infrared emission in YbAG:Ln ³⁺ (Ln = Nd, Sm, Tb, Er). Applied Physics Express, 2015, 8, 072602.	1.1	21
94	Highly sensitive and selective detection of mercury ions based on up-conversion FRET from NaYF ₄ :Yb ³⁺ /Er ³⁺ nanophosphors to CdTe quantum dots. RSC Advances, 2015, 5, 99099-99106.	1.7	36
95	Upconversion luminescence enhancement of Yb ³⁺ , Nd ³⁺ sensitized NaYF ₄ core–shell nanocrystals on Ag grating films. Chemical Communications, 2015, 51, 1502-1505.	2.2	34
96	Highly improved upconversion luminescence in NaGd(WO ₄) ₂ :Yb ³⁺ /Tm ³⁺ inverse opal photonic crystals. Nanoscale, 2015, 7, 1363-1373.	2.8	37
97	Ag-SiO2-Er2O3 Nanocomposites: Highly Effective Upconversion Luminescence at High Power Excitation and High Temperature. Scientific Reports, 2015, 4, 5087.	1.6	49
98	320-fold luminescence enhancement of [Ru(dpp)3]Cl2 dispersed on PMMA opal photonic crystals and highly improved oxygen sensing performance. Light: Science and Applications, 2014, 3, e209-e209.	7.7	42
99	Fluorescence resonance energy transfer between NaYF4:Yb,Tm upconversion nanoparticles and gold nanorods: Near-infrared responsive biosensor for streptavidin. Journal of Luminescence, 2014, 147, 278-283.	1.5	38
100	A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum. Nanoscale, 2014, 6, 12573-12579.	2.8	127
101	Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF,) Tj ETQq1 1	9.784314 2:7	rgBT /Over
102	Temperature-dependent upconversion luminescence and dynamics of NaYF ₄ :Yb ³⁺ /Er ³⁺ nanocrystals: influence of particle size and crystalline phase. Dalton Transactions, 2014, 43, 6139-6147.	1.6	135
103	Phonon-modulated upconversion luminescence properties in some Er3+ and Yb3+ co-activated oxides. Journal of Materials Chemistry C, 2014, 2, 4642.	2.7	28
104	Chiral nematic mesoporous films of Y ₂ O ₃ :Eu ³⁺ with tunable optical properties and modulated photoluminescence. Journal of Materials Chemistry C, 2014, 2, 9189-9195.	2.7	28
105	Self-assembly and modified luminescence properties of NaY(MoO ₄) ₂ :Tb ³⁺ , Eu ³⁺ inverse opals. Dalton Transactions, 2014, 43, 13293.	1.6	26
106	Nd ₂ O ₃ /Au nanocomposites: upconversion broadband emission and enhancement under near-infrared light excitation. Journal of Materials Chemistry C, 2014, 2, 5857-5863.	2.7	34
107	Efficient energy transfer from inserted CdTe quantum dots to YVO4:Eu3+ inverse opals: a novel strategy to improve and expand visible excitation of rare earth ions. Nanoscale, 2014, 6, 8075.	2.8	15
108	Yb ₂ O ₃ /Au Upconversion Nanocomposites with Broad-Band Excitation for Solar Cells. Journal of Physical Chemistry C, 2014, 118, 3258-3265.	1.5	46

#	Article	IF	CITATIONS
109	NaYF ₄ :Yb,Tm nanocrystals and TiO ₂ inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin. Nanoscale, 2014, 6, 5859-5870.	2.8	79
110	A novel strategy for improving upconversion luminescence of NaYF4:Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals. Nano Research, 2013, 6, 795-807.	5.8	84
111	Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals. Chemical Communications, 2013, 49, 3781.	2.2	89
112	A strategy for calibrating the actual quantum efficiency of quantum cutting in YVO4:Bi3+(Nd3+), Yb3+. Journal of Applied Physics, 2013, 113, .	1.1	12
113	Phase transition, size control and color tuning of NaREF4:Yb3+, Er3+ (RE = Y, Lu) nanocrystals. Nanoscale, 2013, 5, 3412.	2.8	77
114	Self-assembly, highly modified spontaneous emission and energy transfer properties of LaPO4:Ce3+, Tb3+ inverse opals. Dalton Transactions, 2013, 42, 8049.	1.6	32
115	ZnO–SnO2 nanotubes surface engineered by Ag nanoparticles: synthesis, characterization, and highly enhanced HCHO gas sensing properties. Journal of Materials Chemistry C, 2013, 1, 2174.	2.7	137
116	Controllable chrominance and highly improved luminescent quantum yield of YV_1-xP_xO_4: Tm, Dy, Eu inverse opal white light phosphors. Optics Express, 2013, 21, 25744.	1.7	10
117	Super-intense white upconversion emission of Yb_2O_3 polycrystals and its application on luminescence converter of dye-sensitized solar cells. Optics Letters, 2013, 38, 3340.	1.7	45
118	Communication: Excitation band modulation with high-order photonic band gap in PMMA:Eu(TTA)3(TPPO)2 opals. Journal of Chemical Physics, 2013, 138, 181103.	1.2	2
119	Observation of Ultrabroad Infrared Emission Bands in Er\$_{2}\$O\$_{3}\$, Pr\$_{2}\$O\$_{3}\$, Nd\$_{2}\$O\$_{3}\$, and Sm\$_{2}\$O\$_{3}\$ Polycrystals. Applied Physics Express, 2012, 5, 102701.	1.1	24
120	Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application. Applied Physics Letters, 2012, 100, 081104.	1.5	28
121	Inhibited local thermal effect in upconversion luminescence of YVO_4:Yb^3+, Er^3+ inverse opals. Optics Express, 2012, 20, 29673.	1.7	20
122	Broad White Light and Infrared Emission Bands in YVO\$_{4}\$:Yb\$^{3+}\$,Ln\$^{3+}\$ (Ln\$^{3+}\$ =) Tj ETQq0	0 0 rgBT /C F1	verlock 10 Tf
123	Remarkable fluorescence enhancement in YVO4:Eu3+@Ag nano-hybrids induced by interface effect. RSC Advances, 2012, 2, 2047.	1.7	23
124	Tunable silica shell and its modification on photoluminescent properties of Y2O3:Eu3+@SiO2 nanocomposites. Journal of Applied Physics, 2012, 111, .	1.1	34
125	The up-conversion luminescent properties and silver-modified luminescent enhancement of YVO4:Yb3+, Er3+ NPs. Dalton Transactions, 2012, 41, 13525.	1.6	38

126Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb,Er2.859nano-film. Nanoscale, 2012, 4, 6971.2.859

#	Article	IF	CITATIONS
127	Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal. Journal of Physical Chemistry C, 2012, 116, 2297-2302.	1.5	42
128	YVO4:Eu3+,Bi3+ UV to visible conversion nano-films used for organic photovoltaic solar cells. Journal of Materials Chemistry, 2011, 21, 12331.	6.7	57
129	Downconversion from visible to near infrared through multi-wavelength excitation in Er3+/Yb3+ co-doped NaYF4 nanocrystals. Journal of Applied Physics, 2011, 110, .	1.1	29
130	Influence of Concentration Effect and Au Coating on Photoluminescence Properties of YVO ₄ :Eu ³⁺ Nanoparticle Colloids. Journal of Physical Chemistry C, 2010, 114, 9975-9980.	1.5	42
131	Controllable Synthesis and Size-Dependent Luminescent Properties of YVO ₄ :Eu ³⁺ Nanospheres and Microspheres. Journal of Physical Chemistry C, 2010, 114, 14018-14024.	1.5	78
132	Three-order fluorescence enhancement of perovskite nanocrystals using plasmonic Ag@SiO2 nanocomposites. Journal of Materials Chemistry C, 0, , .	2.7	1