Jeffrey C Cameron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5568929/publications.pdf

Version: 2024-02-01

40 1,660 20 34 g-index

45 45 45 2068 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Computational modeling and evolutionary implications of biochemical reactions in bacterial microcompartments. Current Opinion in Microbiology, 2022, 65, 15-23.	2.3	3
2	Engineered Living Materials for Construction. , 2022, , 187-216.		3
3	Zam Is a Redox-Regulated Member of the RNB-Family Required for Optimal Photosynthesis in Cyanobacteria. Microorganisms, 2022, 10, 1055.	1.6	O
4	Proximity-based proteomics reveals the thylakoid lumen proteome in the cyanobacterium Synechococcus sp. PCC 7002. Photosynthesis Research, 2021, 147, 177-195.	1.6	6
5	Effect of pH on the activity of ice-binding protein from Marinomonas primoryensis. Extremophiles, 2021, 25, 1-13.	0.9	5
6	Carbon isotope evidence for the global physiology of Proterozoic cyanobacteria. Science Advances, 2021, 7, .	4.7	27
7	Engineering living building materials for enhanced bacterial viability and mechanical properties. IScience, 2021, 24, 102083.	1.9	29
8	Genome engineering of E.Âcoli for improved styrene production. Metabolic Engineering, 2020, 57, 74-84.	3.6	34
9	Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metabolic Engineering Communications, 2020, 10, e00116.	1.9	60
10	Genome-Wide Analysis of RNA Decay in the Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002. MSystems, 2020, 5, .	1.7	6
11	TAG… You're It, Synechocystis sp. PCC 6803!. Plant and Cell Physiology, 2020, 61, 1535-1536.	1.5	1
12	Life cycle of a cyanobacterial carboxysome. Science Advances, 2020, 6, eaba1269.	4.7	45
13	Mechanical regulation of photosynthesis in cyanobacteria. Nature Microbiology, 2020, 5, 757-767.	5.9	23
14	Biomineralization and Successive Regeneration of Engineered Living Building Materials. Matter, 2020, 2, 481-494.	5.0	119
15	Engineered Ureolytic Microorganisms Can Tailor the Morphology and Nanomechanical Properties of Microbial-Precipitated Calcium Carbonate. Scientific Reports, 2019, 9, 14721.	1.6	51
16	Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity. Metabolic Engineering, 2019, 54, 222-231.	3.6	31
17	Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome. Scientific Reports, 2018, 8, 2367.	1.6	10
18	Distinct and redundant functions of three homologs of RNase III in the cyanobacterium Synechococcus sp. strain PCC 7002. Nucleic Acids Research, 2018, 46, 1984-1997.	6.5	9

#	Article	IF	Citations
19	Rational Control of Calcium Carbonate Precipitation by Engineered <i>Escherichia coli</i> ACS Synthetic Biology, 2018, 7, 2497-2506.	1.9	22
20	The Life and Times of a Carboxysome: Tracking a Single Protein Complex Over Multiple Generations. FASEB Journal, 2018, 32, .	0.2	0
21	A1543 is a Potential Bridge Between Cellular Redox State and RNA Processing. FASEB Journal, 2018, 32, 790.11.	0.2	0
22	"Exploring the Regulation of Photosynthesis in Singleâ€Cell Lineages at Subâ€Cellular Resolution― FASEB Journal, 2018, 32, 259.1.	0.2	0
23	RNA Sequencing Identifies New RNase III Cleavage Sites in <i>Escherichia coli</i> and Reveals Increased Regulation of mRNA. MBio, 2017, 8, .	1.8	56
24	CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metabolic Engineering, 2016, 38, 170-179.	3.6	160
25	Biochemical characterization of predicted Precambrian RuBisCO. Nature Communications, 2016, 7, 10382.	5.8	112
26	Genetic and genomic analysis of RNases in model cyanobacteria. Photosynthesis Research, 2015, 126, 171-183.	1.6	23
27	Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance. Journal of Biological Chemistry, 2015, 290, 17321-17330.	1.6	26
28	Insights into the industrial growth of cyanobacteria from a model of the carbonâ€concentrating mechanism. AICHE Journal, 2014, 60, 1269-1277.	1.8	18
29	Immunolocalization of glutathione biosynthesis enzymes in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2014, 75, 9-13.	2.8	18
30	Biogenesis of a Bacterial Organelle: The Carboxysome Assembly Pathway. Cell, 2013, 155, 1131-1140.	13.5	274
31	Probing the origins of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Biochemical Journal, 2013, 450, 63-72.	1.7	34
32	The Structure of CcmP, a Tandem Bacterial Microcompartment Domain Protein from the \hat{I}^2 -Carboxysome, Forms a Subcompartment Within a Microcompartment. Journal of Biological Chemistry, 2013, 288, 16055-16063.	1.6	104
33	Algal Technologies for Biological Capture and Utilization of CO ₂ Require Breakthroughs in Basic Research. ACS Symposium Series, 2012, , 107-141.	0.5	2
34	Plant Glutathione Biosynthesis: Diversity in Biochemical Regulation and Reaction Products. Frontiers in Plant Science, 2011, 2, 45.	1.7	78
35	Glutathione in Synechocystis 6803. Plant Signaling and Behavior, 2011, 6, 89-92.	1.2	17
36	Glutathione Facilitates Antibiotic Resistance and Photosystem I Stability during Exposure to Gentamicin in Cyanobacteria. Applied and Environmental Microbiology, 2011, 77, 3547-3550.	1.4	31

#	Article	IF	CITATIONS
37	A Genetically Tagged Psb27 Protein Allows Purification of Two Consecutive Photosystem II (PSII) Assembly Intermediates in Synechocystis 6803, a Cyanobacterium. Journal of Biological Chemistry, 2011, 286, 24865-24871.	1.6	49
38	Essential Role of Glutathione in Acclimation to Environmental and Redox Perturbations in the Cyanobacterium <i>Synechocystis</i> sp. PCC 6803. Plant Physiology, 2010, 154, 1672-1685.	2.3	94
39	Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC Systems Biology, 2010, 4, 105.	3.0	63
40	Mechanical Regulation of Photosynthesis. SSRN Electronic Journal, 0, , .	0.4	1