Mitchell E Fane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/556890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How the ageing microenvironment influences tumour progression. Nature Reviews Cancer, 2020, 20, 89-106.	28.4	408
2	Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discovery, 2019, 9, 64-81.	9.4	260
3	Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clinical Cancer Research, 2018, 24, 5347-5356.	7.0	253
4	Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discovery, 2019, 9, 82-95.	9.4	100
5	NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF. EBioMedicine, 2017, 16, 63-75.	6.1	85
6	Changes in Aged Fibroblast Lipid Metabolism Induce Age-Dependent Melanoma Cell Resistance to Targeted Therapy via the Fatty Acid Transporter FATP2. Cancer Discovery, 2020, 10, 1282-1295.	9.4	75
7	Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature, 2022, 606, 396-405.	27.8	67
8	<scp>P</scp> in1 promotes neuronal death in stroke by stabilizing <scp>N</scp> otch intracellular domain. Annals of Neurology, 2015, 77, 504-516.	5.3	58
9	Nuclear factor one transcription factors as epigenetic regulators in cancer. International Journal of Cancer, 2017, 140, 2634-2641.	5.1	50
10	<scp>BRN</scp> 2, a <scp>POU</scp> erful driver of melanoma phenotype switching and metastasis. Pigment Cell and Melanoma Research, 2019, 32, 9-24.	3.3	50
11	Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma. Molecular Cell, 2020, 77, 633-644.e5.	9.7	45
12	Genetic screening for single-cell variability modulators driving therapy resistance. Nature Genetics, 2021, 53, 76-85.	21.4	41
13	Bad company: Microenvironmentally mediated resistance to targeted therapy in melanoma. Pigment Cell and Melanoma Research, 2019, 32, 237-247.	3.3	35
14	Genetic variation in <scp>IRF</scp> 4 expression modulates growth characteristics, tyrosinase expression and interferonâ€gamma response in melanocytic cells. Pigment Cell and Melanoma Research, 2018, 31, 51-63.	3.3	19
15	Normal Aging and Its Role in Cancer Metastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037341.	6.2	17
16	sFRP2 Supersedes VEGF as an Age-related Driver of Angiogenesis in Melanoma, Affecting Response to Anti-VEGF Therapy in Older Patients. Clinical Cancer Research, 2020, 26, 5709-5719.	7.0	17
17	Myeloid-Derived Suppressor Cells Are a Major Source of Wnt5A in the Melanoma Microenvironment and Depend on Wnt5A for Full Suppressive Activity. Cancer Research, 2021, 81, 658-670.	0.9	15
18	NR4A2 Promotes DNA Double-strand Break Repair Upon Exposure to UVR. Molecular Cancer Research, 2017, 15, 1184-1196.	3.4	8

#	Article	IF	CITATIONS
19	Reciprocal Regulation of BRN2 and NOTCH1/2 Signaling Synergistically Drives Melanoma Cell Migration and Invasion. Journal of Investigative Dermatology, 2022, 142, 1845-1857.	0.7	1
20	Four! Drivers of melanoma differentiation—When to use iron. Pigment Cell and Melanoma Research, 2018, 31, 658-660.	3.3	0