Xin Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5568555/publications.pdf

Version: 2024-02-01

36	1,199	18	34
papers	citations	h-index	g-index
38	38	38	1742
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Understanding the solvent-assisted crystallization mechanism inherent in efficient organic–inorganic halide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20454-20461.	10.3	147
2	Kinetic fingerprinting to identify and count single nucleic acids. Nature Biotechnology, 2015, 33, 730-732.	17.5	120
3	Probing and regulating the activity of cellular enzymes by using DNA tetrahedron nanostructures. Chemical Science, 2019, 10, 5959-5966.	7.4	79
4	NIR Laserâ€Triggered Microneedleâ€Based Liquid Bandâ€Aid for Wound Care. Advanced Functional Materials, 2021, 31, 2100218.	14.9	69
5	Nucleic Acid Fluorescent Probes for Biological Sensing. Applied Spectroscopy, 2012, 66, 1249-1261.	2.2	67
6	A kinetic method for expeditious detection of pyrophosphate anions at nanomolar concentrations based on a nucleic acid fluorescent sensor. Chemical Communications, 2013, 49, 798-800.	4.1	52
7	In Situ, Real-Time Monitoring of the 3′ to 5′ Exonucleases Secreted by Living Cells. Analytical Chemistry, 2012, 84, 5059-5065.	6.5	49
8	Stretchable, Conductive, and Stable PEDOTâ€Modified Textiles through a Novel In Situ Polymerization Process for Stretchable Supercapacitors. Advanced Materials Technologies, 2016, 1, 1600009.	5.8	48
9	Multi-residue analysis of 126 pesticides in chicken muscle by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chemistry, 2020, 309, 125503.	8.2	44
10	A universal mismatch-directed signal amplification platform for ultra-selective and sensitive DNA detection under mild isothermal conditions. Chemical Science, 2012, 3, 2257.	7.4	43
11	Telomerase Activity Detection with Amplification-Free Single Molecule Stochastic Binding Assay. Analytical Chemistry, 2017, 89, 3576-3582.	6.5	43
12	Simultaneous Fluorescence Imaging of the Activities of DNases and 3′ Exonucleases in Living Cells with Chimeric Oligonucleotide Probes. Analytical Chemistry, 2013, 85, 9939-9946.	6.5	42
13	Rational Design of DNA Frameworkâ€Based Hybrid Nanomaterials for Anticancer Drug Delivery. Small, 2020, 16, e2002578.	10.0	37
14	A two-layer assay for single-nucleotide variants utilizing strand displacement and selective digestion. Biosensors and Bioelectronics, 2016, 82, 248-254.	10.1	31
15	DNA Logic Circuits for Cancer Theranostics. Small, 2022, 18, e2108008.	10.0	26
16	Single-Molecule Kinetic Fingerprinting for the Ultrasensitive Detection of Small Molecules with Aptasensors. Analytical Chemistry, 2019, 91, 1424-1431.	6.5	24
17	Single-Molecule Counting of Point Mutations by Transient DNA Binding. Scientific Reports, 2017, 7, 43824.	3.3	21
18	Base excision repair-inspired DNA motor powered by intracellular apurinic/apyrimidinic endonuclease. Nanoscale, 2019, 11, 1343-1350.	5.6	21

#	Article	IF	CITATIONS
19	Transient Hybridization Directed Nanoflare for Single-Molecule miRNA Imaging. Analytical Chemistry, 2019, 91, 11122-11128.	6.5	19
20	Digestion of Dynamic Substrate by Exonuclease Reveals High Single-Mismatch Selectivity. Analytical Chemistry, 2018, 90, 13655-13662.	6.5	18
21	Wide-scope multi-residue analysis of pesticides in beef by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Food Chemistry, 2021, 351, 129345.	8.2	18
22	Discrimination Cascade Enabled Selective Detection of Single-Nucleotide Mutation. ACS Sensors, 2017, 2, 419-425.	7.8	17
23	Self-resetting molecular probes for nucleic acids detection enabled by fuel dissipative systems. Nano Today, 2021, 41, 101308.	11.9	17
24	A dynamic sandwich assay on magnetic beads for selective detection of single-nucleotide mutations at room temperature. Biosensors and Bioelectronics, 2017, 94, 305-311.	10.1	16
25	Engineering high-robustness DNA molecular circuits by utilizing nucleases. Nanoscale, 2020, 12, 6964-6970.	5.6	16
26	Molecular dynamics simulationâ€guided toehold mediated strand displacement probe for singleâ€nucleotide variants detection. Exploration, 2022, 2, .	11.0	16
27	Sensitive Detection of DNA Lesions by Bulge-Enhanced Highly Specific Coamplification at Lower Denaturation Temperature Polymerase Chain Reaction. Analytical Chemistry, 2017, 89, 8084-8091.	6.5	15
28	Probing DNA Hybridization Equilibrium by Cationic Conjugated Polymer for Highly Selective Detection and Imaging of Single-Nucleotide Mutation. Analytical Chemistry, 2018, 90, 6804-6810.	6.5	15
29	DNA nanotechnology enhanced single-molecule biosensing and imaging. TrAC - Trends in Analytical Chemistry, 2021, 140, 116267.	11.4	15
30	DNA-Templated Timer Probes for Multiplexed Sensing. Nano Letters, 2020, 20, 2688-2694.	9.1	13
31	Discrimination of the false-positive signals of molecular beacons by combination of heat inactivation and using single walled carbon nanotubes. Biosensors and Bioelectronics, 2011, 26, 3596-3601.	10.1	10
32	Facile Preparation of Poly(3,4 $\hat{a} \in e$ thylenedioxythiophene)/MnO ₂ Composite Electrodes for Efficient Supercapacitors. ChemElectroChem, 2016, 3, 1746-1752.	3.4	8
33	Single-molecule dynamic DNA junctions for engineering robust molecular switches. Chemical Science, 2019, 10, 9922-9927.	7.4	8
34	Fatty acid profiling of blood cell membranes by gas chromatography with mass spectrometry. Journal of Separation Science, 2016, 39, 3964-3972.	2.5	6
35	Ultra-specific nucleic acid testing by target-activated nucleases. Critical Reviews in Biotechnology, 2022, 42, 1061-1078.	9.0	6
36	Non-classical hydrogen bond triggered strand displacement for analytical applications and DNA nanostructure assembly. New Journal of Chemistry, 2018, 42, 6636-6639.	2.8	3